Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire and Flame for New Surfaces

02.11.2016

The printing, coating and bonding of plastics requires the surface to be pre-treated. Flame treatment is one way to achieve this so-called activation. It is currently being used in many industrial sectors and has considerable potential for development. The Fraunhofer Institute for Applied Polymer Research IAP in Potsdam and the Italian company esse CI are uniting their expertise in surface chemistry and machine engineering in order to clearly expand the opportunities provided by flame treatment and to extend the range of surface properties. Interested companies can take part in the development of this technology and help advance its industrialization.

When plastic bumpers were first introduced they were black because paint did not adhere very well to the surface. Today these plastic components can easily be painted in the colour of the car body. This is all down to a change in surface properties. The surface is pre-treated with the help of an electric charge or flame. During flame treatment, reactive components form during the burning process.


A flame treatment facility in operation.

esse CI

This initiates oxidation on the material being treated; however, this oxidation is unspecific and can only be altered in quantity, not in typology. This means there is considerable room for the development of optimized high-performance applications. Both partners are looking to explore new avenues in flame treatment.

Flame treatment meets surface chemistry

”Our aim is to expand the range of functionalization and produce bespoke surfaces for special applications. For example, we produce specific functional groups on the surface as reaction partners for reactive adhesives. This enables us to create a high-performance composite with a much better adhesion than with ordinary activation”, explains Dr. Andreas Holländer, a specialist for surface technologies at the Fraunhofer IAP.

The partners combine the Fraunhofer IAP’s expertise in surface chemistry with esse CI’s know-how in flame treatment. They hope to utilise the energy of the flame for chemical processes that go beyond simple oxidation. This requires chemicals to be added to the flame, for example in the form of gases, vapours or aerosols. The studies are conducted in a plastic film processing plant at the Fraunhofer IAP. “Here we test which effects are produced by the chemicals. Using this knowledge, esse Ci’s mechanical engineers enhance the next generation of equipment”, says Holländer.

Augusto Angeli, chairman of esse Ci, is pleased: “By installing our flame treatment system in the demonstration plant in Potsdam we are able to demonstrate the technology’s capabilities to potential customers. “ Stefano Mancinelli, process and sales manager, adds: “We are advancing the development of the technology with the aim of developing new market segments.“

The medium-sized company from Narni, Italy produces equipment for surface treatment on plastic films, cards, aluminium foil and 3D objects. Their flame treatment technology is already being used in a range of industrial applications.

Rapid industrialization with new partners

In order to facilitate the industrialization of this new generation of flame treatment systems, interested companies are invited to take part this year in the project. They can influence the detailed planning, for example, of materials and process parameters, and receive first-hand information and research results. The Fraunhofer IAP and esse CI also provide workshops on the technology, equipment and project results.

Fraunhofer Institute for Applied Polymer Research IAP

The Fraunhofer IAP in Potsdam-Golm, Germany, specializes in research and development of polymer applications. It supports companies and partners in custom development and optimization of innovative and sustainable materials, processing aids and procedures. In addition to the environmentally friendly, economical production and processing of polymers in the laboratory and pilot plant scale, the institute also offers the characterization of polymers. Synthetic petroleum-based polymers as well as biopolymers and biobased polymers from renewable raw materials are in the focus of the institute’s work. The applications are diverse, ranging from biotechnology, medicine, pharmacy and cosmetics to electronics and optics as well as applications in the packaging, environmental and wastewater engineering or the aerospace, automotive, paper, construction and coatings industries. | Director: Prof. Dr. Alexander Böker

Esse CI

Esse CI is an Italian company from Narni that has been specializing in the surface activation of polyolefins and other substrates since 1969. It is the world leader in flame treatment systems for BOPP extrusion lines (up to 10.5 m wide). Esse CI is also active in the pre-treatment (aseptic packaging, extrusion coatings, lamination, printing, adhesive coating, conversion) of materials like paper, cardboard, aluminium, steel, PET and Tedlar®.

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP
Further information:
http://www.iap.fraunhofer.de

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>