Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiery explosions of hot metal on water

06.10.2016

Images of from a high-speed camera reveal a microbead formation process during the vapor explosion of liquid metal dropping into a pool of water.

The explosive reaction of a liquid metal dropping into water has been captured with high-speed cameras by researchers from King Abdullah University of Science and Technology (KAUST), Saudi Arabia. The images reveal how the explosive formation of water vapor around the liquid metal influences the shape of the metal as it hardens [1]. For certain metals, perfectly-shaped microbeads are created during the powerful reaction with water.


Vapor explosion of an 8 mm diameter drop of liquid Field’s metal as it falls into a pool of water.

© 2016 KAUST

Immersion of hot liquids in other liquids is not uncommon, even outside of the laboratory. An example is hot lava from a volcanic eruption encountering water reservoirs or flowing into the sea. This interaction can lead to dramatic reactions when vapor layer forms around the liquid metal. The vapor layer can become unstable and quickly expands into hot clouds of water and ash, noted Siggi Thoroddsen from the KAUST High-Speed Fluids Imaging Laboratory, who also led the research team.

“This happened when the Icelandic volcano Eyjafjallajökull erupted in 2010 and grounded airplanes all over Europe," he said.

The researchers studied related reactions in the lab using a metal alloy known as Field’s metal, which melts at low temperatures of around 60 degrees Celsius. With experiments conducted at 550 degrees Celsius metal temperature, the transfer of energy between the metal and the water is very violent. KAUST Ph.D. student Nadia Kouraytem wore a full protective facial mask and a fire-resistant lab coat during these experiments. High-speed cameras captured the explosive process at speeds of up to 50,000 frames per second.

The images obtained were dramatic and showed an explosive reaction that tore the metal apart. In the case of Field’s metal, small spherical microbeads formed during the process.

During the reaction, the metal transitioned through several stages with increasing ferocity. While initially only a small part of the metal interacted with the water, over a longer period increasingly more of the metal was exposed and took part in the reaction until the disintegration of the liquid metal into small beads.

The unusual microbead formation occurs due to the low melting temperature. Metals with a higher melting temperature (such as tin) solidify faster because their higher solidification temperature is reached more quickly upon cooling so that there is less time for the material to disintegrate. An example is the porous structures seen in solidified lava from volcanic eruptions.

In the case of Field’s metal, the beads are highly uniform, and it will be interesting to study their creation processes further, noted Thoroddsen.

“In future experiments, we want to better control the original drop, change its size and impact velocity. This should further probe the instabilities of the vapor layer that forms around the metal,” he said.

Associated links

Journal information

[1] Kouraytem, N., Li, E. Q. & Thoroddsen, S.T. Formation of microbeads during vapor explosions of Field’s metal in water. Physical Review E 93, 063108 (2016).

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>