Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimentation and largest-ever quantum simulation of a disordered system explain quantum many-particle problem

15.03.2016

Using some of the largest supercomputers available, physics researchers from the University of Illinois at Urbana-Champaign have produced one of the largest simulations ever to help explain one of physics most daunting problems.

"This result was a fantastic collaboration between theory and experiment," explained Physics Professor Brian DeMarco, whose group led the experimental phase of the study.


Figure illustrates puddles of localized quasi-condensates found using a quantum Monte Carlo simulation of trapped atoms in a disordered lattice. Individual puddles, consisting of 10-20 particles each, are incoherent relative to each other. The Bose glass is composed of these puddle-like structures.

Credit: Ushnish Ray, University of Illinois

"One of the grandest and most impactful frontiers of physics is the quantum many-particle problem. We do not understand very well what happens when many quantum particles come together and interact with each other. This problem spans some of the largest scales in the universe, like understanding the nuclear matter in neutron stars, to the smallest, such as electron transport in photosynthesis and the quarks and gluons inside a proton."

DeMarco's group experiments with atoms gases cooled to just billionths of a degree above absolute zero temperature in order to experimentally simulate models of materials such as high-temperature superconductors. In these experiments, the atoms play the role of electrons in a material, and the analog of material parameters (like disorder) are completely controlled and known and can be changed every 90-second experimental cycle. Measurements on the atoms are used to expose new physics and test theories.

"In most cases, we lack predictive power, because these problems are not readily computable -- a classical computer requires exponentially costly resources to simulate many quantum systems," added David Ceperley, a professor of physics whose team developed the companion simulation. "A key example of this problem with practical challenges lies with materials such as high-temperature superconductors. Even armed with the chemical composition and structure of these materials, it is almost impossible to predict today at what temperature they will super-conduct."

The different approaches to attacking a particularly important quantum many-particle problem by DeMarco's and Ceperley's groups came together in a new result published in Nature Physics. In their paper, "Probing the Bose glass-superfluid transition using quantum quenches of disorder," Carolyn Meldgin from DeMarco's group and Ushnish Ray from Ceperley's team share a new understanding of how disorder in a quantum material gives rise to an exotic quantum state called a Bose glass.

"A Bose glass is a strange and poorly understood insulator that can occur when disorder is added to a superfluid or superconductor," Meldgin said. In her experiments, Meldgin was able to use optical disorder to induce a Bose glass, and Ray exactly simulated the experiment using the Titan supercomputer.

In this work, Ceperley's group achieved the largest scale computer simulations possible of a disordered quantum many-particle system on the biggest supercomputers in existence. These computer simulations were able to simulate relatively large numbers of particles, such as the 30,000 atoms used in DeMarco's experiments.

Together, Meldgin and Ray were able to show something startling--that a dynamic probe in the experiment connects to the equilibrium computer simulations.

"In both cases, the same amount of disorder is required to turn a superfluid into a Bose-glass," Ray stated. "This result is critically important to our understanding of disordered quantum materials, which are ubiquitous, since disorder is difficult to avoid. It also has important implications for quantum annealers, like the D-Wave Systems device."

Brian DeMarco | EurekAlert!

More articles from Materials Sciences:

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>