Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering on a blue streak

31.07.2017

University of Delaware researchers pioneer greener way to create interwoven polymers with blue light

A pair of engineers at the University of Delaware has developed a process to form interwoven polymer networks more easily, quickly and sustainably than traditional methods allow. Their secret ingredient? Blue light.


University of Delaware researchers made the University logo using their newly developed polymerization technique.

Credit: Abhishek Shete/ University of Delaware

Abhishek Shete, graduate research assistant in materials science and engineering, and Christopher Kloxin, assistant professor in materials science and engineering and chemical and biomolecular engineering, describe their method in a paper featured on the cover of the 24th issue of Polymer Chemistry. The paper is titled "One-pot blue-light triggered tough interpenetrating polymeric network (IPN) using CuAAC and methacrylate reactions."

Polymers, which are materials made from chains of molecules, are found in everything from food to clothing to cars. Two or more types of polymer chains with different individual properties can also be linked together to form interpenetrating polymeric networks, materials that often combine favorable mechanical properties from each polymer such as high strength and toughness.

"These chemistries independently are used in a broad range of applications," from dental composites, automobile bumpers to drug delivery materials, Shete said.

However, the process of linking polymers is not simple. It requires two chemical reactions, which are typically initiated through either a lengthy two-step process or a one-step process induced at elevated temperatures and longer time spans.

The method Kloxin and Shete developed is one step and works rapidly at room temperature and ambient conditions.

They use 470-nanometer blue light, which is similar to blue LED light used to detect certain body fluids in crime scene investigations. This light triggers reactions with a photosensitizer called camphorquinone and an activator called amine. These materials are commonly utilized in polymeric dental composites for filling cavities.

The light irradiates the materials to photostimulate the two chemical reactions, but not simultaneously. First up is a reaction called the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click polymerization. This reaction is facilitated by copper, and polymerization occurs in steps. Next is a reaction called the methacrylate polymerization, which forms a plastic-like material in a manner similar to adding links to a growing chain. "This is unique in the way the blue light induces sequential reactions," says Kloxin.

The end result is a material that Kloxin and Shete describe as a "glassy film," less brittle than pure methacrylate and stronger than pure CuAAC at higher temperature. The films made from this IPN material also exhibit shape memory-- when deformed, it can be returned to its original size and shape with 15 minutes of heating at 80 degrees Celsius.

This blue-light approach to form interpenetrating polymer networks saves time and energy, but those are not its only advantages. For one, this approach allows Kloxin and Shete to control the pair of chemical reactions with increased precision, allowing them to fashion the polymer networks into complex shapes. This rapid method also keeps the ingredients from separating in a way that could otherwise interfere with the formation of an interpenetrating polymer network.

In addition, the new process requires none of the solvents or additives commonly used in plastics manufacturing, often added to prevent brittle fracture. The materials reported by Kloxin and Shete exhibit enhanced toughness that overcomes this brittleness without any solvents or additives, also making it a greener synthetic approach.

The team has filed a provisional patent for the method described in the new paper. "These chemistries could be attached to other molecules," Kloxin said, and the team will test their applications to form hydrogels, dental materials and other polymer networks.

Media Contact

Peter Bothum
pbothum@udel.edu
302-831-1418

 @UDResearch

http://www.udel.edu 

Peter Bothum | EurekAlert!

Further reports about: IPN blue light chemical reactions materials polymerization

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>