Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrode materials from the microwave oven

19.10.2017

Novel process facilitates production of high-voltage cathodes for lithium-ion batteries

Power on the go is in demand: The higher the battery capacity, the larger the range of electric cars and the longer the operating time of cell phones and laptops. Dr. Jennifer Ludwig of the Technical University of Munich (TUM) has developed a process that allows a fast, simple, and cost-effective production of the promising cathode material lithium cobalt phosphate in high quality. The chemist was awarded the Evonik Research Prize for her work.


Dr. Jennifer Ludwig at the Technical University of Munich (TUM) has developed a process, that allows a fast, simple, and cost-effective production of nanocrystalline lithium cobalt phosphate crystals. Compared to standard lithium iron phosphate this material improves the energy density of lithium-ion batteries from about 600 to 800 watt hours per kilogram.

Credit: Andreas Battenberg / TUM

Hope is pink: The powder that Jennifer Ludwig carefully pours into a glass bowl and which glows pink in the light of the laboratory lamp has the potential to significantly improve the performance of future batteries. "Lithium cobalt phosphate can store substantially more energy than conventional cathode materials," explains the chemist.

Working in the group of Tom Nilges, head of the Professorship of Synthesis and Characterization of Innovative Materials, the chemist has developed a process for producing the pink powder quickly, with minimal amounts of energy and in the highest quality.

Battery researchers have been considering lithium cobalt phosphate a material of the future for some time. It operates at higher voltages than the traditionally employed lithium iron phosphate and thus, attains a higher energy density - 800 watt hours per kilogram instead of just under 600 watt hours.

Previous process: expensive and energy-intensive

Previously, however, the production of the promising high-voltage cathode material required a very complex, energy-intensive and inefficient process under harsh conditions with temperatures of 800 °C. "And the crystals that form under these conditions vary in size and must be ground to nanocrystalline powder in a second, energy-intensive production step," reports Ludwig.

Furthermore, the resulting crystals exhibit sufficient ionic conductivity in only one direction. Over most of the surface, the chemical reaction between the electrode material and the electrolyte in the batteries progresses very slowly.

Tailored crystals

The microwave synthesis process developed by Jennifer Ludwig solves all of these issues at once: Obtaining the high-grade lithium cobalt phosphate requires only a microwave oven and 30 minutes of time.

The reactants are placed in a Teflon container together with a solvent and are then heated. A mere 600 W are sufficient to achieve the 250 °C required to stimulate the crystal formation.

The flat platelets created in the process measure less than one micrometer across and are only a few hundred nanometers thick, with the axis of maximum conductivity oriented towards the surface. "This shape ensures better electrochemical performance because the lithium ions need to move only short distances within the crystals," explains Ludwig.

Steering the reaction

The chemist was also able to solve another problem in the course of her experiments: At temperatures over 200 °C and under high pressure, instead of the desired lithium cobalt phosphate a hitherto unknown, complex cobalt hydroxide hydrogen phosphate compound is occasionally formed.

Jennifer Ludwig succeeded in elucidating the reaction mechanism, isolating the compound and determining its structure and properties. Since the new compound is unsuitable as a battery material, she modified the reaction so that only the desired lithium cobalt phosphate is produced.

"With this new production process, we can now create high-performance, platelet-shaped lithium cobalt phosphate crystals with tailored properties in high quality," says Professor Nilges. "Thus, a further hurdle on the path to new high-voltage materials has been taken."

###

Jennifer Ludwig's work was funded by the TUM Graduate School, BMW, and the Chemical Industry Fund. The investigation of electrochemical properties was performed in cooperation with the Chair of Technical Electrochemistry, TU Munich. The structure and properties of the complex cobalt hydroxide hydrogen phosphate were investigated in collaboration with the Lawrence Berkeley National Laboratory (LBNL), the Stanford Synchrotron Radiation Light Source (SSRL) and the Walther-Meißner-Institut (WMI). For the development of the new synthesis process, Jennifer Ludwig received the Evonik Research Prize, which the chemical company annually awards to next-generation researchers.

Media Contact

Dr. Andreas Battenberg
battenberg@zv.tum.de
49-892-891-0510

 @TU_Muenchen

http://www.tum.de 

Dr. Andreas Battenberg | EurekAlert!

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>