Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Recycling of Lithium-Ion Batteries – Launch of Research Project NEW-BAT

13.09.2016

Funding was granted by the Federal Ministry of Education and Research (BMBF) to develop an innovative recycling process for valuable battery materials to be reinserted into the battery supply chain. The goal of the NEW-BAT project is a robust, energy efficient and economically viable system with wide application potential.

Lithium-ion batteries are key elements in electromobility and a successful energy turnaround. The widespread use of these energy storage devices will come along with large quantities of spent batteries which itself constitute a valuable source of raw materials.


A new method will allow to recover valuable battery materials.

© K. Selsam-Geißler, Fraunhofer ISC


The electrohydraulic fragmentation method enables to recycle sythesized materials for direct re-use.

© Impulstec

Today, only energy-intensive metallurgical methods are in place to recycle used batteries and scrap materials from battery production, and even these are limited to the recovery of elementary metals. This way, profitability can only be achieved for metals like nickel, cobalt, or manganese.

It would make economic sense, however, to recover the actual battery materials. Their production from base elements is costly and complex. The recovery of high-grade lithium metal oxides, for example, or hitherto non-recyclable carbon compounds could mean significant savings in energy and cost and could contribute to securing valuable resources like lithium.

This is the starting point of the NEW-BAT project which has been granted 1.6 million euros funding within the framework of the »r4« research initiative of the German Federal Ministry of Education and Research BMBF (r4 – Innovative technologies for resource efficiency – Research for the supply of raw materials of strategic economic importance).

In NEW-BAT, scientists and engineers from research institutions and industry join forces to develop a new system to completely recover and process all battery materials for direct re-use in new batteries. The team is led by Andreas Bittner from the Fraunhofer Project Group for Materials Recycling and Resource Strategies IWKS.

Intelligent separation over simple shredding

The most distinctive feature of the new recycling process is the electro-hydraulic materials fragmentation by shock waves. This takes place under water or in other liquids. The shock waves are generated by an electrical discharge, and the water or other liquid serves to uniformly impart them onto the infeed material. This method enables composites and building blocks to come apart at the interfaces of different materials in a practically non-contact manner.

The material mix thus derived from the many battery components – cathode, anode, electrolyte, separator as well as cell and battery casings – can then be sorted out efficiently in a next step. In order to obtain the purest recyclates possible, separation methods account for physical properties such as grain size and density as well as for varied chemical compositions.

At no point does this method involve high temperature processes which renders it much more energy-efficient than metallurgical recycling technologies. It is equally suitable for spent batteries and scrap material from battery production.

Functional coatings as finishing touch

It is the electrode materials that age the most during a battery’s life. Recycled materials therefore must be carefully tested and treated to restore their original quality. Project partner Fraunhofer ISC is in the position to offer special low temperature procedures suitable for Lithium-ion battery materials to remove undesirable degradation products from surfaces and to repair crystal structure defects. This treatment can even be combined with the application of a finishing core-shell coating which significantly improves the life and the charge and discharge properties of the recycled materials.

The Project Team

The two R&D partners – the Fraunhofer Project Group for Materials Recycling and Resource Strategies IWKS at Alzenau and Hanau, acting as project coordinator, and its parent institute the Fraunhofer Institute for Silicate Research ISC at Würzburg – contribute with their profound expertise and experience in the areas of recycling, substitution, and resource strategies as well as in the development of materials and electrochemical energy storage devices. The consortium’s competence is complemented by its industry partners from recycling, battery manufacturing and plant engineering, the Lars Walch GmbH & Co. KG at Baudenbach, the GRS Service GmbH at Hamburg and the ImpulsTec GmbH located in Dresden.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.iwks.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>