Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Recycling of Lithium-Ion Batteries – Launch of Research Project NEW-BAT

13.09.2016

Funding was granted by the Federal Ministry of Education and Research (BMBF) to develop an innovative recycling process for valuable battery materials to be reinserted into the battery supply chain. The goal of the NEW-BAT project is a robust, energy efficient and economically viable system with wide application potential.

Lithium-ion batteries are key elements in electromobility and a successful energy turnaround. The widespread use of these energy storage devices will come along with large quantities of spent batteries which itself constitute a valuable source of raw materials.


A new method will allow to recover valuable battery materials.

© K. Selsam-Geißler, Fraunhofer ISC


The electrohydraulic fragmentation method enables to recycle sythesized materials for direct re-use.

© Impulstec

Today, only energy-intensive metallurgical methods are in place to recycle used batteries and scrap materials from battery production, and even these are limited to the recovery of elementary metals. This way, profitability can only be achieved for metals like nickel, cobalt, or manganese.

It would make economic sense, however, to recover the actual battery materials. Their production from base elements is costly and complex. The recovery of high-grade lithium metal oxides, for example, or hitherto non-recyclable carbon compounds could mean significant savings in energy and cost and could contribute to securing valuable resources like lithium.

This is the starting point of the NEW-BAT project which has been granted 1.6 million euros funding within the framework of the »r4« research initiative of the German Federal Ministry of Education and Research BMBF (r4 – Innovative technologies for resource efficiency – Research for the supply of raw materials of strategic economic importance).

In NEW-BAT, scientists and engineers from research institutions and industry join forces to develop a new system to completely recover and process all battery materials for direct re-use in new batteries. The team is led by Andreas Bittner from the Fraunhofer Project Group for Materials Recycling and Resource Strategies IWKS.

Intelligent separation over simple shredding

The most distinctive feature of the new recycling process is the electro-hydraulic materials fragmentation by shock waves. This takes place under water or in other liquids. The shock waves are generated by an electrical discharge, and the water or other liquid serves to uniformly impart them onto the infeed material. This method enables composites and building blocks to come apart at the interfaces of different materials in a practically non-contact manner.

The material mix thus derived from the many battery components – cathode, anode, electrolyte, separator as well as cell and battery casings – can then be sorted out efficiently in a next step. In order to obtain the purest recyclates possible, separation methods account for physical properties such as grain size and density as well as for varied chemical compositions.

At no point does this method involve high temperature processes which renders it much more energy-efficient than metallurgical recycling technologies. It is equally suitable for spent batteries and scrap material from battery production.

Functional coatings as finishing touch

It is the electrode materials that age the most during a battery’s life. Recycled materials therefore must be carefully tested and treated to restore their original quality. Project partner Fraunhofer ISC is in the position to offer special low temperature procedures suitable for Lithium-ion battery materials to remove undesirable degradation products from surfaces and to repair crystal structure defects. This treatment can even be combined with the application of a finishing core-shell coating which significantly improves the life and the charge and discharge properties of the recycled materials.

The Project Team

The two R&D partners – the Fraunhofer Project Group for Materials Recycling and Resource Strategies IWKS at Alzenau and Hanau, acting as project coordinator, and its parent institute the Fraunhofer Institute for Silicate Research ISC at Würzburg – contribute with their profound expertise and experience in the areas of recycling, substitution, and resource strategies as well as in the development of materials and electrochemical energy storage devices. The consortium’s competence is complemented by its industry partners from recycling, battery manufacturing and plant engineering, the Lars Walch GmbH & Co. KG at Baudenbach, the GRS Service GmbH at Hamburg and the ImpulsTec GmbH located in Dresden.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.iwks.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>