Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Recycling of Lithium-Ion Batteries – Launch of Research Project NEW-BAT

13.09.2016

Funding was granted by the Federal Ministry of Education and Research (BMBF) to develop an innovative recycling process for valuable battery materials to be reinserted into the battery supply chain. The goal of the NEW-BAT project is a robust, energy efficient and economically viable system with wide application potential.

Lithium-ion batteries are key elements in electromobility and a successful energy turnaround. The widespread use of these energy storage devices will come along with large quantities of spent batteries which itself constitute a valuable source of raw materials.


A new method will allow to recover valuable battery materials.

© K. Selsam-Geißler, Fraunhofer ISC


The electrohydraulic fragmentation method enables to recycle sythesized materials for direct re-use.

© Impulstec

Today, only energy-intensive metallurgical methods are in place to recycle used batteries and scrap materials from battery production, and even these are limited to the recovery of elementary metals. This way, profitability can only be achieved for metals like nickel, cobalt, or manganese.

It would make economic sense, however, to recover the actual battery materials. Their production from base elements is costly and complex. The recovery of high-grade lithium metal oxides, for example, or hitherto non-recyclable carbon compounds could mean significant savings in energy and cost and could contribute to securing valuable resources like lithium.

This is the starting point of the NEW-BAT project which has been granted 1.6 million euros funding within the framework of the »r4« research initiative of the German Federal Ministry of Education and Research BMBF (r4 – Innovative technologies for resource efficiency – Research for the supply of raw materials of strategic economic importance).

In NEW-BAT, scientists and engineers from research institutions and industry join forces to develop a new system to completely recover and process all battery materials for direct re-use in new batteries. The team is led by Andreas Bittner from the Fraunhofer Project Group for Materials Recycling and Resource Strategies IWKS.

Intelligent separation over simple shredding

The most distinctive feature of the new recycling process is the electro-hydraulic materials fragmentation by shock waves. This takes place under water or in other liquids. The shock waves are generated by an electrical discharge, and the water or other liquid serves to uniformly impart them onto the infeed material. This method enables composites and building blocks to come apart at the interfaces of different materials in a practically non-contact manner.

The material mix thus derived from the many battery components – cathode, anode, electrolyte, separator as well as cell and battery casings – can then be sorted out efficiently in a next step. In order to obtain the purest recyclates possible, separation methods account for physical properties such as grain size and density as well as for varied chemical compositions.

At no point does this method involve high temperature processes which renders it much more energy-efficient than metallurgical recycling technologies. It is equally suitable for spent batteries and scrap material from battery production.

Functional coatings as finishing touch

It is the electrode materials that age the most during a battery’s life. Recycled materials therefore must be carefully tested and treated to restore their original quality. Project partner Fraunhofer ISC is in the position to offer special low temperature procedures suitable for Lithium-ion battery materials to remove undesirable degradation products from surfaces and to repair crystal structure defects. This treatment can even be combined with the application of a finishing core-shell coating which significantly improves the life and the charge and discharge properties of the recycled materials.

The Project Team

The two R&D partners – the Fraunhofer Project Group for Materials Recycling and Resource Strategies IWKS at Alzenau and Hanau, acting as project coordinator, and its parent institute the Fraunhofer Institute for Silicate Research ISC at Würzburg – contribute with their profound expertise and experience in the areas of recycling, substitution, and resource strategies as well as in the development of materials and electrochemical energy storage devices. The consortium’s competence is complemented by its industry partners from recycling, battery manufacturing and plant engineering, the Lars Walch GmbH & Co. KG at Baudenbach, the GRS Service GmbH at Hamburg and the ImpulsTec GmbH located in Dresden.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.iwks.fraunhofer.de

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Materials Sciences:

nachricht Flying: Efficiency thanks to Lightweight Air Nozzles
23.10.2017 | Technische Universität Chemnitz

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>