Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dynamic DNA polymers can be reversed using biocompatible techniques

18.05.2016

DNA-based straight and branched polymers or nanomaterials that can be created and dissolved using biocompatible methods are now possible thanks to the work of Penn State biomedical engineers.


A nanotree made of DNA can be reversed under standard physiological conditions without burning or other harsh interventions, according to a new study led by Yong Wang, associate professor of biomedical engineering at Penn State.

Credit: Penn State

Synthetic polymers may lead to advances in a broad range of biological and biomedical applications such as drug delivery, molecular detection and bioimaging.

"Achieving reversibility of synthetic polymers and nanomaterials has been a long-standing dream for many biomedical engineers," said Yong Wang, associate professor of biomedical engineering. "Scientists want to see these polymers reverse or disappear when we are finished with them, but that often involves the use of high temperatures and chemical solvents. With that idea in mind, the aim of our study was to create synthetic polymers that would decompose without the use of harsh elements or increased stress. In principle, the polymers could be further tuned to synthesize a diverse array of nanomaterials or bulk materials."

To assemble the dynamic polymers, researchers linked DNA initiators -- straight DNA strands with a single binding domain -- to two DNA monomers with multiple domains. The bonded molecules formed a linear double-stranded DNA structure with a separate and functional side group. The researchers then created a trigger molecule that attached to the side group and initiated a "reverse without the involvement of any non-physiological factors," according to a recent article in Angewandte Chemie International Edition.

The researchers also showed that branched polymers responded to the same technique.

Branched polymers synthesized with a straight polymer and two DNA monomers yielded two functional side groups with the ability to reverse when induced by two molecular triggers.

The researchers performed preliminary testing of the model in water, with subsequent testing conducted on synthetic antibodies. Antibody trials proved that growth and depolymerization of straight and branched polymers were also possible on the microparticle surface and in the extracellular matrix.

Wang and his team are hopeful that by uniting the polymers with various molecules and materials, their findings will hold value for a number of wide-ranging applications.

###

Collaborating with Wang on the project were Niancao Chen, research fellow at Boston Children's Hospital, Harvard Medical School and recent Penn State Ph.D and Xuechen Shi, Penn State graduate student in bioengineering.

Integrated National Science Foundation Support Promoting Interdisciplinary Research and Education and the National Institutes of Health Heart, Lung, and Blood Institute supported this work.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>