Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Josephson Junctions Generated in Atomic-Layered Superconductors

05.02.2015

The finding may pave the way to create atomic-scale superconducting elements

A research group at the NIMS International Center for Materials Nanoarchitectonics and a research team at the Institute for Solid State Physics of the University of Tokyo discovered that in an atomic-scale-thick superconductor formed on a silicon surface, a single-atom difference in height between atomic layers (atomic step) acts as a Josephson junction that controls the flow of supercurrent. The results of this research have been published in the Physical Review Letters, DOI: http://dx.doi.org/10.1103/PhysRevLett.113.247004.


Figure 2 of the press release. A 3-D diagram of an atomic-layered superconductor observed under the scanning tunneling microscope. The heights of atomic layers are depicted, and the densities of localized electron states are represented by different brightnesses. Superconducting quantum vortices exist in the bright areas near atomic steps. The differences among A, B and C are attributed to the change in strength of the respective Josephson junctions, and to the differences in the gap width between the indium atomic layers near atomic steps. In particular, C is identified as a Josephson vortex. Arrows schematically indicate the flow of supercurrent and the pattern where, as a Josephson junction weakens, the vortex elongates in the direction parallel to the atomic step.

Copyright : NIMS

(Shunsuke Yoshizawa, Howon Kim, Takuto Kawakami, Yuki Nagai, Tomonobu Nakayama, Xiao Hu, Yukio Hasegawa, and Takashi Uchihashi, Article title: “Imaging Josephson Vortices on the Surface Superconductor Si(111)−(√7×√3)−In using a Scanning Tunneling Microscope” Phys. Rev. Lett. 113, 247004 – Published 10 December 2014.)

A research group at the NIMS (Sukekatsu Ushioda, president) International Center for Materials Nanoarchitectonics (MANA, Masakazu Aono, director), consisting of post-doctoral researcher Shunsuke Yoshizawa, MANA researcher Takashi Uchihashi, MANA principal investigator Tomonobu Nakayama, post-doctoral researcher Takuto Kawakami and MANA principal investigator Xiao Hu, and a research team at the Institute for Solid State Physics of the University of Tokyo, consisting of post-doctoral researcher Kim Howon and associate professor Yukio Hasegawa, discovered that in an atomic-scale thick superconductor formed on a silicon surface, a single-atom difference in height between atomic layers (atomic step) acts as a Josephson junction that controls the flow of supercurrent.

Recently discovered atomic-layered superconductors on a silicon surface have the potential of developing into ultra-tiny, superconducting nano-devices with atomic-scale thickness. However, fabrication of such devices requires the creation of a Josephson junction, an essential component in superconducting logic elements, and the method of creating such junctions had not been well understood.

Conducting an experiment using a scanning tunneling microscope, and performing microscopic theoretical calculations, the research team recently discovered that a special superconducting state called a Josephson vortex, a type of superconducting quantum vortex, is generated at atomic steps in atomic-layered superconductors. Based on this finding, the team revealed that atomic steps act as Josephson junctions. These results also indicate that the use of atomic-layered superconductors enables quick and mass fabrication of Josephson junctions in a self-organizing manner in contrast to the current method of fabricating the junctions one by one using conventional superconducting elements.

In consideration of these findings, in the future studies, the researchers are planning to fabricate Josephson elements that are only an atomic-level thick and apply them to superconducting devices. Also, it is known that Josephson vortices play a vital role in high-temperature superconductors that are a promising technology for electric power applications. The results from this study are expected to contribute to the identification of superconducting properties of high-temperature superconductors.

This study was jointly conducted with Yuki Nagai, a researcher at the Japan Atomic Energy Agency, as a part of the world premier international research center initiative and the grants-in-aid for scientific research program sponsored by the Ministry of Education, Culture, Sports, Science and Technology.
This study has been published in Physical Review Letters, an journal of the American Physical Society, as an Editors’ Suggestion article. DOI: http://dx.doi.org/10.1103/PhysRevLett.113.247004


Associated links
NIMS press release

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>