Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Josephson Junctions Generated in Atomic-Layered Superconductors

05.02.2015

The finding may pave the way to create atomic-scale superconducting elements

A research group at the NIMS International Center for Materials Nanoarchitectonics and a research team at the Institute for Solid State Physics of the University of Tokyo discovered that in an atomic-scale-thick superconductor formed on a silicon surface, a single-atom difference in height between atomic layers (atomic step) acts as a Josephson junction that controls the flow of supercurrent. The results of this research have been published in the Physical Review Letters, DOI: http://dx.doi.org/10.1103/PhysRevLett.113.247004.


Figure 2 of the press release. A 3-D diagram of an atomic-layered superconductor observed under the scanning tunneling microscope. The heights of atomic layers are depicted, and the densities of localized electron states are represented by different brightnesses. Superconducting quantum vortices exist in the bright areas near atomic steps. The differences among A, B and C are attributed to the change in strength of the respective Josephson junctions, and to the differences in the gap width between the indium atomic layers near atomic steps. In particular, C is identified as a Josephson vortex. Arrows schematically indicate the flow of supercurrent and the pattern where, as a Josephson junction weakens, the vortex elongates in the direction parallel to the atomic step.

Copyright : NIMS

(Shunsuke Yoshizawa, Howon Kim, Takuto Kawakami, Yuki Nagai, Tomonobu Nakayama, Xiao Hu, Yukio Hasegawa, and Takashi Uchihashi, Article title: “Imaging Josephson Vortices on the Surface Superconductor Si(111)−(√7×√3)−In using a Scanning Tunneling Microscope” Phys. Rev. Lett. 113, 247004 – Published 10 December 2014.)

A research group at the NIMS (Sukekatsu Ushioda, president) International Center for Materials Nanoarchitectonics (MANA, Masakazu Aono, director), consisting of post-doctoral researcher Shunsuke Yoshizawa, MANA researcher Takashi Uchihashi, MANA principal investigator Tomonobu Nakayama, post-doctoral researcher Takuto Kawakami and MANA principal investigator Xiao Hu, and a research team at the Institute for Solid State Physics of the University of Tokyo, consisting of post-doctoral researcher Kim Howon and associate professor Yukio Hasegawa, discovered that in an atomic-scale thick superconductor formed on a silicon surface, a single-atom difference in height between atomic layers (atomic step) acts as a Josephson junction that controls the flow of supercurrent.

Recently discovered atomic-layered superconductors on a silicon surface have the potential of developing into ultra-tiny, superconducting nano-devices with atomic-scale thickness. However, fabrication of such devices requires the creation of a Josephson junction, an essential component in superconducting logic elements, and the method of creating such junctions had not been well understood.

Conducting an experiment using a scanning tunneling microscope, and performing microscopic theoretical calculations, the research team recently discovered that a special superconducting state called a Josephson vortex, a type of superconducting quantum vortex, is generated at atomic steps in atomic-layered superconductors. Based on this finding, the team revealed that atomic steps act as Josephson junctions. These results also indicate that the use of atomic-layered superconductors enables quick and mass fabrication of Josephson junctions in a self-organizing manner in contrast to the current method of fabricating the junctions one by one using conventional superconducting elements.

In consideration of these findings, in the future studies, the researchers are planning to fabricate Josephson elements that are only an atomic-level thick and apply them to superconducting devices. Also, it is known that Josephson vortices play a vital role in high-temperature superconductors that are a promising technology for electric power applications. The results from this study are expected to contribute to the identification of superconducting properties of high-temperature superconductors.

This study was jointly conducted with Yuki Nagai, a researcher at the Japan Atomic Energy Agency, as a part of the world premier international research center initiative and the grants-in-aid for scientific research program sponsored by the Ministry of Education, Culture, Sports, Science and Technology.
This study has been published in Physical Review Letters, an journal of the American Physical Society, as an Editors’ Suggestion article. DOI: http://dx.doi.org/10.1103/PhysRevLett.113.247004


Associated links
NIMS press release

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>