Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a novel gold-based superconductor

25.04.2014

Researchers at Japan's National Institute for Materials Science (NIMS) have synthesized a novel superconductor, SrAuSi3, which contains gold as a principal constituent element.

Led by Masaaki Isobe, a team consisting of Hiroyuki Yoshida, Koji Kimoto, Masao Arai and Eiji Muromachi recently searched for novel substances that lack spatial inversion symmetry in their crystal structures.


Crystal structure (a) and scanning transmission electron microscope lattice image (b) of SrAuSi3

Copyright : National Institute for Materials Science (NIMS)

They successfully synthesized a new compound, SrAuSi3, and found that it exhibits superconductivity at an absolute temperature of 1.6 K (-271.55°C). This compound belongs to a group with a so-called BaNiSn3-type structure (general chemical formula: AMX3, where M represents a transition-metal element).

Up until now, research on superconductivity with broken spatial inversion symmetry has mostly focused on compounds that contain a relatively heavy element M, such as rhodium (Rh), iridium (Ir), and platinum (Pt).

However, using a high-pressure synthesis method, the team successfully synthesised for the first time a compound with the same general chemical formula but using gold (Au), which is even heavier, as element M.

One of the predicted properties associated with superconductivity with broken spatial inversion symmetry is the extremely high upper critical field (the maximum magnetic field value at which superconductivity is sustained).

The discovery of this substance is expected to contribute not only to an understanding of the mechanism involved in superconductivity with broken spatial inversion symmetry but also to the development of new superconducting materials that can be used in a magnetic field.

The results of this research were published in the March 25, 2014 issue (Volume 6, Issue 6) of Chemistry of Materials, a journal distributed by the American Chemical Society. 

Associated links

Mikiko Tanifuji | Research SEA News
Further information:
http://www.nims.go.jp/eng
http://www.researchsea.com

More articles from Materials Sciences:

nachricht A new vortex identification method for 3-D complex flow
04.05.2016 | Science China Press

nachricht Preventing another Flint, Mich.; new research could lead to more corrosion-resistant water pipes
04.05.2016 | Binghamton University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>