Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a New Way to Make Foams Could Lead to Lightweight, Sustainable Materials

08.10.2014

Anyone who has blown a bubble and seen how quickly it pops has first-hand experience on the major challenge in creating stable foams.

At its most basic level, foam is a bunch of bubbles squished together. Liquid foams, a state of matter that arises from tiny gas bubbles dispersed in a liquid, are familiar in everyday life, from beer to bathwater.


Credit: Gary Meek

Yi Zhang, a graduate student co-advised by Prof. Sven Behrens and Prof. Carson Meredith in the School of Chemical & Biomolecular Engineering at Georgia Tech, is shown holding a porous solid material prepared from a capillary foam.

They also are important in commercial products and processes, including pharmaceutical formulation, oil production, food processing, cleaning products, cosmetics, or hair and skin care products. Lightweight dry foams for the construction of buildings, automobiles and airplanes are key materials in the push for sustainability and energy efficiency. Making lightweight foam has one big challenge, however, keeping the foam stable.

A team of researchers from the Georgia Institute of Technology has developed a new type of foam – called capillary foam – that solves many of the problems faced by traditional foams. The new research shows for the first time that the combined presence of particles and a small amount of oil in water-based foams can lead to exceptional foam stability when neither the particles nor the oil can stabilize the foams alone.

“It’s very difficult to stabilize foams, and we want foams that are stable for months or years,” said Sven Behrens, study co-author and professor in the School of Chemical and Biomolecular Engineering at Georgia Tech. “We’ve developed a way to make foams that is much easier and more broadly applicable that what is traditionally used.”

The study was sponsored by the National Science Foundation (NSF). The research was published online October 3, 2014, in the journal Angewandte Chemie. The new capillary foams were developed by graduate student Yi Zhang, who is co-advised by Behrens and Carson Meredith, also a professor in the School of Chemical and Biomolecular Engineering.

The main ingredients for foam are air and water. Surfactants, which are similar to detergents, are then traditionally added to stabilize foams. Another traditional way to stabilize foam is to add microscopic particles, like talc powder. Both approaches require that the additive have a specific set of properties, which isn’t always possible with the materials available.

The new study demonstrates how the addition of a tiny amount of oil allows the use of particles with more general properties.

“It sounds like we’re making the system more complicated by adding oil to the mix, but it’s a small amount of oil that could be something as simple as vegetable oil,” Meredith said.

The new capillary foams expand the range of particles useful for stabilizing foams that are made of air and water. Air bubbles are stabilized by the combined action of the particles and the small amount of oil. This synergy of oil and particulate is counterintuitive because oils usually decrease foam stability and are commonly used as defoaming agents. But like the water-bridged grains of sand that hold a sand castle together, particles in the capillary foam form a stabilizing network connected by oil bridges.

“This is a novel phenomenon that people haven’t discussed before, so we need to know more about why this works,” Meredith said.

Lightweight dry foams made by this process could be used in many industries, from construction to automobile and airplane manufacturing.

“We’re looking at several different application areas where it could be used as a product,” Behrens said.

This research is supported by the Renewable Bioproducts Institute of Georgia Tech, by the National Science Foundation (awards CBET-1134398 and CBET-1160138), and by the Air Force Office of Scientific Research under award number FA9550-10-1-0555. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agencies.

CITATION: Yi Zhang, et. al., “A new class of liquid foams stabilized by synergistic action of particles and immiscible liquid.” (September 2014, Angewandte Chemie) http://dx.doi.org/10.1002/ange.201405816

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
@GTResearchNews

Media Relations Contacts: Brett Israel (@btiatl) (404-385-1933) (brett.israel@comm.gatech.edu) or John Toon (404-894-6986) (jtoon@gatech.edu)

Writer: Brett Israel

John Toon | newswise
Further information:
http://www.gatech.edu

Further reports about: Angewandte Chemie Biomolecular Foams Foundation action bubbles construction developed materials

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>