Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of 3D Charge Density Wave in High-temperature Superconductivity

10.12.2015

An international research team has found a surprising three-dimensional arrangement of electrons in the Y-based high-temperature superconductor.

The team - comprising researchers from Japan's Tohoku University, SLAC National Accelerator Laboratory, Stanford University in USA and University of British Colombia in Canada - made the discovery while successfully combining powerful magnetic field pulses with some of the brightest X-rays on the planet.


Fig. 1 The blend of intense magnetic and X-ray laser pulses uncover the mystery of high temperature superconductor.

Copyright : Tohoku University


Fig. 2 The IMR mini magnet used for the experiment is only 25.4 mm long.

Copyright : Tohoku University

The localization of electrons forming the special regular patterns called a charge density wave (CDW) had previously been known as a mysterious phenomenon of high temperature superconductivities. That is because the direct observation of CDW in very high magnetic fields had been considered an "impossible mission" due to the absence of high magnetic field device compatible with X-ray free electron laser.

But the IMR group has now developed an inch-size miniature pulsed magnet that can generate an extremely strong magnetic field of 30 Tesla and installed it into the beam line of a Linac Coherent Light Source at SLAC.

The results resolve discrepancies found in previous experiments, and offer a new picture of the behaviors of electrons in these exotic materials under extreme conditions. The researchers hope this will aid the design and development of new superconductors that work at higher temperatures.

This study was supported by IMR through the ICC-IMR Research Project and by the Interdepartmental Doctoral Degree Program for Multi-dimensional Materials Science Leaders (MD program).

Publication Details :

Authors:
S. Gerber, H. Jang, H. Nojiri, S. Matsuzawa, H. Yasumura, D. A. Bonn, R. Liang, W. N. Hardy, Z. Islam, A. Mehta, S. Song, M. Sikorski, D. Stefanescu, Y. Feng, S. A. Kivelson, T. P. Devereaux, Z.-X. Shen, C.-C. Kao, W.-S. Lee, D. Zhu, J.-S. Lee

Title:
Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields
Journal: Science
DOI: 10.1126/science.aac6257

Contact:
Prof. Hiroyuki Nojiri
Magnetism Division
Institute for Materials Research, Tohoku University
Tel: +81-22-215-2017
Email: nojiriimr.tohoku.ac.jp

Mr. Satoshi Matsuzawa
Institute for Materials Research
Interdepartmental Doctoral Degree Program for Multi-dimensional Materials Science Leaders (MD program), Tohoku University
Tel: +81-22-215-2017
Email: matsuzawaimr.tohoku.ac.jp

Associated links
Original article from Tohoku University

Ngaroma Riley | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>