Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamonds get more beautiful with laser lamps

16.04.2015

Did you know, that diamonds get more beautiful after cutting with lasers?

Diamonds were always popular particularly when they are very big and of a brilliant surface. Yet, the bigger the rough diamond, the bigger the risk of destroying it during cutting.

Lasers have been used for sawing, kerfing, bruting and shaping of diamonds since the early 1990s. Diamond cutting is the art, and increasingly the science, of producing a faceted gem from a rough stone.

After analysing and scanning the raw gem, a laser is used to perform the computerised cut. The function of the laser lamp is to pump energy into the laser rod, the output is then amplified in the laser resonator to produce a coherent laser beam.

For diamond cutting, CW lamps are the preferred option because they are ideal for high beam quality and a seamless, high-quality cut. Heraeus Noblelight has started to serve the global diamond processing industry since its origin and until today is the market leader in this field due to quality and service.

Lamps from Heraeus in Cambridge are reliable and of high quality. This helps to minimise weight loss and breakage.

Contact us
Dr. Marie-Luise Bopp
Marketing
+49-6181-35 8547
marie-luise.bopp@heraeus.com

Headquarter

Heraeus Noblelight GmbH
Heraeusstraße 12-14
D-63450 Hanau, Germany
Phone: +49 (0) 6181 35-8492
Fax: +49 (0) 6181 35-16 8492
E-mail: hng-info@heraeus.com

http://www.heraeus-noblelight.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>