Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond-like coatings save fuel

09.06.2015

Coating engine components with hard carbon reduces friction to almost zero – a development that could save billions of liters of fuel worldwide every year. Now researchers have developed a new laser method to apply the coating on the production line.

Scientists already know how to coat components with diamond-like carbon to minimize friction. But now Fraunhofer researchers have developed a laser arc method with which layers of carbon almost as hard as diamond can be applied on an industrial scale at high coating rates and with high thicknesses.


Dr. Volker Weihnacht, Prof. Andreas Leson and Dr. Hans-Joachim Scheibe (left to right) successfully developed a laser arc method of depositing friction-reducing,wear-resistant coatings on components.

Dirk Mahler/Fraunhofer

By applying carbon coatings to engine components such as piston rings and pins, fuel consumption can be reduced. “Systematic application of our new method could save more than 100 billion liters of fuel each year over the next ten years,” says Prof. Andreas Leson from the Fraunhofer Institute for Material and Beam Technology IWS in Dresden, referencing a study that was published in the journal Tribology International in 2012.

Carbon-based coatings are already used in volume production. But now the team of IWS researchers led by Prof. Leson, Dr. Hans-Joachim Scheibe and Dr. Volker Weihnacht has succeeded in producing hydrogen-free ta-C coatings on an industrial scale at a consistent level of quality. These tetrahedral amorphous carbon coatings are significantly harder and thus more resistant to wear than conventional diamond-like coatings.

“Unfortunately, you can’t just scrape off diamond dust and press it onto the component. So we had to look for a different method,” says Dr. Scheibe, who has spent over 30 years investigating carbon’s friction-reducing properties.

A pulsed laser controls the light arc

In a similar style to old-fashioned film projectors, the laser arc method generates an arc between an anode and a cathode (the carbon) in a vacuum. The arc is initiated by a laser pulse on the carbon target. This produces a plasma consisting of carbon ions, which is deposited as a coating on the workpiece in the vacuum.

To run this process on an industrial scale, a pulsed laser is vertically scanned across a rotating graphite cylinder as a means of controlling the arc. The cylinder is converted evenly into plasma thanks to the scanning motion and rotation. To ensure a consistently smooth coating, a magnetic field guides the plasma and filters out any particles of dirt.

The laser arc method can be used to deposit very thick ta-C coatings of up to 20 micrometers at high coating rates. “High coating thicknesses are crucial for certain applications – especially in the auto industry, where components are exposed to enormous loads over long periods of time,” says Dr. Weihnacht.

The automotive and motorcycle manufacturer BMW is working intensively on the industrial-scale implementation of ta-C engine components in its various vehicle models with the aim of reducing their fuel consumption. Prof. Leson sees this as the first major step in using the laser arc method to save resources. And as a motorcycle aficionado himself, he also sees another positive effect stemming from this development:

“The fact that our research is helping to make motorcycling more environmentally friendly eases my conscience every time I go for a ride,” he says, unable to suppress a smile.
Andreas Leson, Hans-Joachim Scheibe and Volker Weihnacht received the 2015 Joseph von Fraunhofer Prize for the development of the laser arc method and the application of ta-C coatings in volume production.

Weitere Informationen:

http://www.fraunhofer.de/en/press/fraunhofer-awards-ceremony-2015/diamond-like-c...

Dr. rer. nat. Ralf Jäckel | Fraunhofer Research News

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>