Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better than Diamond

07.01.2013
University of Würzburg physicists have modified silicon carbide crystals in a way that these exhibit new and surprising properties. This makes them interesting with regard to the design of high-performance computers or data transmission.

Silicon carbide crystals consist of a regular lattice formed by silicon and carbon atoms. At present, these semiconductors are extensively used in micro and opto-electronics.


A combination of light and radio waves can be used to store and retrieve information in silicon vacancy defects.
Graphics: Georgy Astakhov

Together with scientists from Saint Petersburg, University of Würzburg physicists have now succeeded in manipulating silicon carbide in a way that the material is suited, among other things, to be used in novel, super-fast quantum computers.

A defect in the crystal

"We have removed a silicon atom from the crystal lattice, thus creating a silicon vacancy defect," Dr. Georgy Astakhov says, explaining the method applied by the physicists. Astakhov is a research fellow at the Department for Experimental Physics VI of the University of Würzburg.

To the researchers' surprise, this crystallographic defect gives the material interesting new properties. In order for the semiconductor to emit light – speaking in descriptive terms – its electrons must be raised to a higher energy level by means of energy-rich light, for instance. The silicon vacancy defect leads to the generation of additional energy levels in the so-called band gap.

Stepladder for electrons

Professor Vladimir Dyakonov, chair of the Department for Experimental Physics VI, explains the process with a simple analogy: "In a regular, perfectly structured silicon carbide crystal, the electron must overcome a big hurdle with only one step. This requires a lot of energy. Due to the defect, the electron is provided with a ladder. It can clear the hurdle with two steps, requiring less energy."

When the electrons "fall back" from the higher energy level to the lower one, this type of silicon carbide emits infrared rather than ultraviolet light. According to Astakhov, such light is better suited to transfer information in an optical fiber. "This requires wavelengths in the infrared range," the physicist says.

Application in a quantum computer

The modified silicon carbide is particularly promising for another application – as a semiconductor and storage medium in novel quantum computers. "Since their invention, transistors have shrunk from several tens of micrometers to approximately ten nanometers, i.e. about one thousandth of their original size," Astakhov notes. If the miniaturization continues at this speed, transistors would have to consist of one individual atom in ten years' time. At this scale, however, special physical laws apply, namely the laws of quantum mechanics.

The computers of today process information with the binary system (0/1): Electricity flows or it does not. A quantum computer processes information in the form of so-called qubits. These can be based on the spin of electrons. In simplified terms, the spin represents their angular momentum. It can point in several directions, for which reason it can represent much more information than a classical bit.

The information lies in the defect

"In this field of research, a lot of attention has been paid to the color centers in diamond, which exhibit defects that are similar to those of our silicon carbide," says Astakhov. Their qubits can be easily addressed, changed or read even at room temperature. However, the diamond production technology is not nearly as advanced as that of silicon semiconductors. "For this reason, there is a worldwide hunt for quantum systems that combine the advantages of diamond and silicon within one material," Astakhov explains.

The Würzburg physicists consider silicon carbide with a vacancy defect to be a suitable candidate for this purpose. "The missing atom also has as a consequence that the crystal lattice lacks an electron, which in turn is equivalent to the spin that can be used as information carrier in a quantum computer," Dyakonov explains. Furthermore, the silicon carbide technology is fairly well developed. Light emitting diodes, transistors, micro-electro-mechanical components or sensors made from this material are already on the market.

Exposing the material to light and radio waves

The Würzburg physicists conducted their experiments in collaboration with researchers from Saint Petersburg. By "hitting" the silicon crystals simultaneously with light and radio waves, they were able to manipulate the spins in a targeted way, enabling them to store and retrieve information at will.

What the physicists are particularly enthusiastic about: "It is remarkable that the silicon vacancy qubits in a densely packed crystal behave almost like atoms with well-defined, very sharp optical resonances. This is very unusual," Astakhov adds.

Publication in "Physical Review Letters"

The researchers published their results in the journal "Physical Review Letters" at the end of 2012. "This is a new research field where experimental data of other study groups are still scarce at the moment. However, the reviewers looked favorably on our experiments and immediately recommended our manuscript for publication. We are very curious to know how the scientific community will react to our study," Astakhov reveals. The first reaction has already materialized: Astakhov has been invited to present his results at the Quantum Science Symposium in Cambridge.

Future plans

Spin quantum computers not only require the ability to process information, but also to store the information for as long as possible. This is still a problem at this point, since the stray field of adjacent nuclei can gradually erase the information stored in the defects.

Therefore, the researchers from Würzburg and Saint Petersburg plan as a next step to produce silicon carbide crystals that are formed from a silicon isotope without a magnetic moment. "We know that spin-free isotopes of silicon and carbon atoms exist," says Astakhov. A silicon carbide crystal exclusively consisting of such isotopes should therefore be capable of storing the information over a long period of time.

"Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide", D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, Phys. Rev. Lett., 109, 226402 (2012), doi:10.1103/PhysRevLett.109.226402

Contact persons

Prof. Dr. Vladimir Dyakonov, T: +49 (0)931 31-83111, e-mail: dyakonov@physik.uni-wuerzburg.de

Dr. Georgy Astakhov, T: +49 (0)931 31-85125, e-mail: astakhov@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>