Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better than Diamond

07.01.2013
University of Würzburg physicists have modified silicon carbide crystals in a way that these exhibit new and surprising properties. This makes them interesting with regard to the design of high-performance computers or data transmission.

Silicon carbide crystals consist of a regular lattice formed by silicon and carbon atoms. At present, these semiconductors are extensively used in micro and opto-electronics.


A combination of light and radio waves can be used to store and retrieve information in silicon vacancy defects.
Graphics: Georgy Astakhov

Together with scientists from Saint Petersburg, University of Würzburg physicists have now succeeded in manipulating silicon carbide in a way that the material is suited, among other things, to be used in novel, super-fast quantum computers.

A defect in the crystal

"We have removed a silicon atom from the crystal lattice, thus creating a silicon vacancy defect," Dr. Georgy Astakhov says, explaining the method applied by the physicists. Astakhov is a research fellow at the Department for Experimental Physics VI of the University of Würzburg.

To the researchers' surprise, this crystallographic defect gives the material interesting new properties. In order for the semiconductor to emit light – speaking in descriptive terms – its electrons must be raised to a higher energy level by means of energy-rich light, for instance. The silicon vacancy defect leads to the generation of additional energy levels in the so-called band gap.

Stepladder for electrons

Professor Vladimir Dyakonov, chair of the Department for Experimental Physics VI, explains the process with a simple analogy: "In a regular, perfectly structured silicon carbide crystal, the electron must overcome a big hurdle with only one step. This requires a lot of energy. Due to the defect, the electron is provided with a ladder. It can clear the hurdle with two steps, requiring less energy."

When the electrons "fall back" from the higher energy level to the lower one, this type of silicon carbide emits infrared rather than ultraviolet light. According to Astakhov, such light is better suited to transfer information in an optical fiber. "This requires wavelengths in the infrared range," the physicist says.

Application in a quantum computer

The modified silicon carbide is particularly promising for another application – as a semiconductor and storage medium in novel quantum computers. "Since their invention, transistors have shrunk from several tens of micrometers to approximately ten nanometers, i.e. about one thousandth of their original size," Astakhov notes. If the miniaturization continues at this speed, transistors would have to consist of one individual atom in ten years' time. At this scale, however, special physical laws apply, namely the laws of quantum mechanics.

The computers of today process information with the binary system (0/1): Electricity flows or it does not. A quantum computer processes information in the form of so-called qubits. These can be based on the spin of electrons. In simplified terms, the spin represents their angular momentum. It can point in several directions, for which reason it can represent much more information than a classical bit.

The information lies in the defect

"In this field of research, a lot of attention has been paid to the color centers in diamond, which exhibit defects that are similar to those of our silicon carbide," says Astakhov. Their qubits can be easily addressed, changed or read even at room temperature. However, the diamond production technology is not nearly as advanced as that of silicon semiconductors. "For this reason, there is a worldwide hunt for quantum systems that combine the advantages of diamond and silicon within one material," Astakhov explains.

The Würzburg physicists consider silicon carbide with a vacancy defect to be a suitable candidate for this purpose. "The missing atom also has as a consequence that the crystal lattice lacks an electron, which in turn is equivalent to the spin that can be used as information carrier in a quantum computer," Dyakonov explains. Furthermore, the silicon carbide technology is fairly well developed. Light emitting diodes, transistors, micro-electro-mechanical components or sensors made from this material are already on the market.

Exposing the material to light and radio waves

The Würzburg physicists conducted their experiments in collaboration with researchers from Saint Petersburg. By "hitting" the silicon crystals simultaneously with light and radio waves, they were able to manipulate the spins in a targeted way, enabling them to store and retrieve information at will.

What the physicists are particularly enthusiastic about: "It is remarkable that the silicon vacancy qubits in a densely packed crystal behave almost like atoms with well-defined, very sharp optical resonances. This is very unusual," Astakhov adds.

Publication in "Physical Review Letters"

The researchers published their results in the journal "Physical Review Letters" at the end of 2012. "This is a new research field where experimental data of other study groups are still scarce at the moment. However, the reviewers looked favorably on our experiments and immediately recommended our manuscript for publication. We are very curious to know how the scientific community will react to our study," Astakhov reveals. The first reaction has already materialized: Astakhov has been invited to present his results at the Quantum Science Symposium in Cambridge.

Future plans

Spin quantum computers not only require the ability to process information, but also to store the information for as long as possible. This is still a problem at this point, since the stray field of adjacent nuclei can gradually erase the information stored in the defects.

Therefore, the researchers from Würzburg and Saint Petersburg plan as a next step to produce silicon carbide crystals that are formed from a silicon isotope without a magnetic moment. "We know that spin-free isotopes of silicon and carbon atoms exist," says Astakhov. A silicon carbide crystal exclusively consisting of such isotopes should therefore be capable of storing the information over a long period of time.

"Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide", D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A. A. Soltamova, P. G. Baranov, V. A. Ilyin, and G. V. Astakhov, Phys. Rev. Lett., 109, 226402 (2012), doi:10.1103/PhysRevLett.109.226402

Contact persons

Prof. Dr. Vladimir Dyakonov, T: +49 (0)931 31-83111, e-mail: dyakonov@physik.uni-wuerzburg.de

Dr. Georgy Astakhov, T: +49 (0)931 31-85125, e-mail: astakhov@physik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>