Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design tool beefs up artificial muscles

05.07.2016

Polymeric materials that stretch out when electrically stimulated can benefit from realistic numerical simulations.

Robotic devices are usually composed of hard components such as aluminum and steel, in contrast to the soft tissues that power biological organisms. A study conducted by A*STAR researchers now makes it easier to turn squishy, electroactive polymers into artificial muscles and biomimetic energy harvesters through computer-aided design [1].


A finite element simulation of a viscoelastic dielectric elastomer actuator, which undergoes wrinkling under voltage. © 2016 A*STAR Institute of High Performance Computing

Dielectric elastomers are rubbery, insulating membranes that respond dramatically to electric fields — when sandwiched between two electrodes, they can expand by several hundred per cent in a two-dimensional plane. These special deformation properties have led to applications such as soft-body robotics and sensors. However, the shape-shifting membranes often develop changes in their electrically stimulated response over time, making them hard to optimize for long-term use.

Keith Choon Chiang Foo from the A*STAR Institute of High Performance Computing and his team realized that numerical simulations could help to improve dielectric elastomer devices. They turned to finite element analysis, a tool that predicts the performance of complex objects by modeling them as small interconnected geometric units, to reach this goal. But finding algorithms that replicate smart polymer behavior is not straightforward.

“Existing finite element software doesn’t have the capability to simulate soft rubbery materials that respond to electricity and involve large deformations,” says Foo. “Plus, most simulations of these polymers have been done using ‘in-house’ software, meaning source codes are not available to the scientific community.”

The researchers solved these issues with a model that revealed how repeated movements affected the membrane’s ability to respond to electricity and mechanical forces over time. Their algorithms coupled this property, known as viscoelasticity, to electrostatic charges in the device. They implemented this model into commercial finite element software. “We have made the subroutine freely available to aid other researchers,” adds Foo.

The team’s simulations highlighted examples where viscoelasticity has an impact on the performance of artificial muscle-like devices. For example, when an electrical pulse causes the membrane to stretch out, the elastomer takes a characteristic time to relax to the new configuration. If the pulse cycles at a rate close to this relaxation time, mechanical actuation can be significantly affected.

Further tests showed the improved finite element analysis could quantify the critical time delay between the instant an electrical signal is applied and the maximum polymer actuation achieved. Because the computations agree well with previous experimental data, Foo is confident this technique can reduce trial-and-error approaches to biomimetic devices.

“This simulation tool may prove very capable,” he remarks. “When we work with experimentalists, it helps guide our approach to soft machines.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing. For more information about the team’s research, please visit the Soft Matter Group webpage.

Reference

[1] Foo, C. C. & Zhang, Z.-Q. A finite element method for inhomogeneous deformation of viscoelastic dielectric elastomers. International Journal of Applied Mechanics 7, 1550069 (2015).

Associated links

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>