Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design tool beefs up artificial muscles

05.07.2016

Polymeric materials that stretch out when electrically stimulated can benefit from realistic numerical simulations.

Robotic devices are usually composed of hard components such as aluminum and steel, in contrast to the soft tissues that power biological organisms. A study conducted by A*STAR researchers now makes it easier to turn squishy, electroactive polymers into artificial muscles and biomimetic energy harvesters through computer-aided design [1].


A finite element simulation of a viscoelastic dielectric elastomer actuator, which undergoes wrinkling under voltage. © 2016 A*STAR Institute of High Performance Computing

Dielectric elastomers are rubbery, insulating membranes that respond dramatically to electric fields — when sandwiched between two electrodes, they can expand by several hundred per cent in a two-dimensional plane. These special deformation properties have led to applications such as soft-body robotics and sensors. However, the shape-shifting membranes often develop changes in their electrically stimulated response over time, making them hard to optimize for long-term use.

Keith Choon Chiang Foo from the A*STAR Institute of High Performance Computing and his team realized that numerical simulations could help to improve dielectric elastomer devices. They turned to finite element analysis, a tool that predicts the performance of complex objects by modeling them as small interconnected geometric units, to reach this goal. But finding algorithms that replicate smart polymer behavior is not straightforward.

“Existing finite element software doesn’t have the capability to simulate soft rubbery materials that respond to electricity and involve large deformations,” says Foo. “Plus, most simulations of these polymers have been done using ‘in-house’ software, meaning source codes are not available to the scientific community.”

The researchers solved these issues with a model that revealed how repeated movements affected the membrane’s ability to respond to electricity and mechanical forces over time. Their algorithms coupled this property, known as viscoelasticity, to electrostatic charges in the device. They implemented this model into commercial finite element software. “We have made the subroutine freely available to aid other researchers,” adds Foo.

The team’s simulations highlighted examples where viscoelasticity has an impact on the performance of artificial muscle-like devices. For example, when an electrical pulse causes the membrane to stretch out, the elastomer takes a characteristic time to relax to the new configuration. If the pulse cycles at a rate close to this relaxation time, mechanical actuation can be significantly affected.

Further tests showed the improved finite element analysis could quantify the critical time delay between the instant an electrical signal is applied and the maximum polymer actuation achieved. Because the computations agree well with previous experimental data, Foo is confident this technique can reduce trial-and-error approaches to biomimetic devices.

“This simulation tool may prove very capable,” he remarks. “When we work with experimentalists, it helps guide our approach to soft machines.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing. For more information about the team’s research, please visit the Soft Matter Group webpage.

Reference

[1] Foo, C. C. & Zhang, Z.-Q. A finite element method for inhomogeneous deformation of viscoelastic dielectric elastomers. International Journal of Applied Mechanics 7, 1550069 (2015).

Associated links

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>