Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deriving Inspiration from the Dragon Tree

09.09.2016

Researchers demonstrate how a branch–stem attachment could serve as a model for technical fiber-reinforced lightweight ramifications

Could dragon trees serve as a source of inspiration for innovations in lightweight construction? A team of researchers at the University of Freiburg and the Karlsruhe Institute of Technology (KIT) has laid the groundwork for designing technical fiber-reinforced lightweight ramifications modeled on branch–stem attachments.


This three-dimensional representation of the outer surface (left) and the entire vascular system (right) of the branch–stem attachment of the dragon tree shows which tissues inside the plant are displaced in a loaded state (yellow) in comparison to an unloaded state (red).

With the help of high-resolution magnetic resonance imaging techniques, the scientists succeeded in observing how the tissue of a living dragon tree is displaced when subjected to a load. In the future, technical fiber-reinforced lightweight ramifications with structures and behavior similar to that of the natural model could be used to improve architectural supporting structures, bicycle frames, or automobile bodies. The team published the findings in the journal Scientific Reports.

Research groups led by Prof. Dr. Thomas Speck, head of the Plant Biomechanics Group and director of the University of Freiburg Botanical Garden, and Prof. Dr. Jan G. Korvink, head of the Institute of Microstructure Technology at KIT, developed a new type of experimental setup for the study.

The biologist Linnea Hesse from the University of Freiburg and the medical physicist Dr. Jochen Leipold from the Department of Radiology – Medical Physics at the Freiburg University Medical Center began by imaging the inside of a dragon tree stem and branch in an unloaded state with the help of a magnetic resonance imaging device (MRT). They then used a mechanical arm controlled from outside of the MRI device to bend the branch and again imaged the internal structure of the plant. The scientists created three-dimensional computer models of the two sets of images.

These models allowed them to compare how the tissues that stabilize the plant behave under these conditions and how they are displaced in response to a load – including both the vascular bundles that transport substances and fluids within the plant and the fiber caps that surround and protect these vascular bundles.

In doing so, the scientists observed the entire branch–stem attachment as well as the individual vascular bundles to track with great precision the changes they undergo when subjected to a load. Depending on their position in the branch, the bundles and the caps stretch lengthwise to absorb a tensile load or are pressed crosswise against the surrounding tissue to cushion it against compressive stress.

The findings will now serve as a basis for developing technical fiber-reinforced lightweight ramifications – with the goal of further improving lightweight and stable materials using a natural model.

Original publication:
Hesse, L., Masselter, T., Leupold, J., Spengler, N., Speck, T., Korvink, J.G.: Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree. Sci. Rep. 6, 32685; doi: 10.1038/srep32685 (2016).

Contact:
Prof. Dr. Thomas Speck
Plant Biomechanics Group
University of Freiburg
Phone: +49 (0)761/203-2875
E-Mail: thomas.speck@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-09-08.124-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>