Decoding cement's shape promises greener concrete

Rice University materials scientists have mapped the morphogenesis of cement hydrates used in concrete. It could lead to a way to 'program' cement particles for the manufacture of stronger, more durable and more environmentally friendly concrete. Credit: Multiscale Materials Laboratory/Rice University

Bringing order to disorder is key to making stronger and greener cement, the paste that binds concrete.

Scientists at Rice University have decoded the kinetic properties of cement and developed a way to “program” the microscopic, semicrystalline particles within. The process turns particles from disordered clumps into regimented cubes, spheres and other forms that combine to make the material less porous and more durable.

Their study appears in the Royal Society of Chemistry's Journal of Materials Chemistry A.

The technique may lead to stronger structures that require less concrete — and less is better, said Rice materials scientist and lead author Rouzbeh Shahsavari. Worldwide production of more than 3 billion tons of concrete a year now emits as much as 10 percent of the carbon dioxide, a greenhouse gas, released to the atmosphere.

Through extensive experiments, Shahsavari and his colleagues decoded the nanoscale reactions — or “morphogenesis” — of the crystallization within calcium-silicate hydrate (C-S-H) cement that holds concrete together.

For the first time, they synthesized C-S-H particles in a variety of shapes, including cubes, rectangular prisms, dendrites, core-shells and rhombohedra and mapped them into a unified morphology diagram for manufacturers and builders who wish to engineer concrete from the bottom up.

“We call it programmable cement,” he said. “The great advance of this work is that it's the first step in controlling the kinetics of cement to get desired shapes. We show how one can control the morphology and size of the basic building blocks of C-S-H so that they can self-assemble into microstructures with far greater packing density compared with conventional amorphous C-S-H microstructures.”

He said the idea is akin to the self-assembly of metallic crystals and polymers. “It's a hot area, and researchers are taking advantage of it,” Shahsavari said. “But when it comes to cement and concrete, it is extremely difficult to control their bottom-up assembly. Our work provides the first recipe for such advanced synthesis.

“The seed particles form first, automatically, in our reactions, and then they dominate the process as the rest of the material forms around them,” he said. “That's the beauty of it. It's in situ, seed-mediated growth and does not require external addition of seed particles, as commonly done in the industry to promote crystallization and growth.”

Previous techniques to create ordered crystals in C-S-H required high temperatures or pressures, prolonged reaction times and the use of organic precursors, but none were efficient or environmentally benign, Shahsavari said.

The Rice lab created well-shaped cubes and rectangles by adding small amounts of positive or negative ionic surfactants and calcium silicate to C-S-H and exposing the mix to carbon dioxide and ultrasonic sound. The crystal seeds took shape around surfactant micelles within 25 minutes. Decreasing the calcium silicate yielded more spherical particles and smaller cubes, while increasing it formed clumped spheres and interlocking cubes.

Once the calcite “seeds” form, they trigger the molecules around them to self-assemble into cubes, spheres and other shapes that are orders of magnitude larger. These can pack more tightly together in concrete than amorphous particles, Shahsavari said. Carefully modulating the precursor concentration, temperature and duration of the reaction varies the yield, size and morphology of the final particles.

The discovery is an important step in concrete research, he said. It builds upon his work as part of the Massachusetts Institute of Technology team that decoded cement's molecular “DNA” in 2009. “There is currently no control over C-S-H shape,” Shahsavari said. “The concrete used today is an amorphous colloid with significant porosity that entails reduced strength and durability.”

Concrete is one focus of Shahsavari's Rice lab, which has studied both its macroscale manufacture and intrinsic nanoscale properties. Because concrete is the world's most common construction material and a significant source of atmospheric carbon dioxide, he is convinced of the importance of developing “greener” concrete.

The new technique has several environmental benefits, Shahsavari said. “One is that you need less of it (the concrete) because it is stronger. This stems from better packing of the cubic particles, which leads to stronger microstructures. The other is that it will be more durable. Less porosity makes it harder for unwanted chemicals to find a path through the concrete, so it does a better job of protecting steel reinforcement inside.”

The research required the team to develop a method to test microscopic concrete particles for strength. The researchers used a diamond-tipped nanoindenter to crush single cement particles with a flat edge.

They programmed the indenter to move from one nanoparticle to the next and crush it and gathered mechanical data on hundreds of particles of various shapes in one run. “Other research groups have tested bulk cement and concrete, but no group had ever probed the mechanics of single C-S-H particles and the effect of shape on mechanics of individual particles,” Shahsavari said.

He said strategies developed during the project could have implications for other applications, including bone tissue engineering, drug delivery and refractory materials, and could impact such other complex systems as ceramics and colloids.

###

Rice postdoctoral researcher Sakineh Moghadda is lead author of the paper. Co-authors are Rice graduate students Sung Hoon Hwang and Shuo Zhao, postdoctoral researcher Sreeprasad Srinavasan, undergraduate Benhang Shi and Kenton Whitmire, a professor of chemistry; visiting scientists Vahid Hejazi and Joseph Miller of C-Crete Technologies in Houston; Aali Alizadeh of C-Crete Technologies and Irene Rusakova, a senior research scientist at the University of Houston.

The National Science Foundation and the Department of Energy supported the research.

Read the abstract at http://pubs.rsc.org/en/content/articlelanding/2016/ta/c6ta09389b#!divAbstract

This news release can be found online at http://news.rice.edu/2016/12/07/decoding-cements-shape-promises-greener-concrete/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Multiscale Materials Laboratory home page: http://rouzbeh.rice.edu/

George R. Brown School of Engineering: http://engineering.rice.edu

Rice Department of Civil and Environmental Engineering: http://www.ceve.rice.edu

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

Images for download:

http://news.rice.edu/files/2016/11/1212_CEMENT-1-web-1lpd9zs.jpg

Rice University scientists created microscopic cubes and other shapes of cement and crushed them to test their mechanical properties. The shapes may serve as “seeds” for the bottom-up manufacture of stronger, more durable concrete. (Credit: Multiscale Materials Laboratory/Rice University)

http://news.rice.edu/files/2016/11/1212_CEMENT-2-web-1a6n34v.jpg

An isolated cement cube created by the lab of Rice materials scientist Rouzbeh Shahsavari. Microscopic cubes and other shapes may serve as “seeds” in programmable cement for stronger, less porous and more environmentally friendly concrete. (Credit: Multiscale Materials Laboratory/Rice University)

http://news.rice.edu/files/2016/12/1212_CEMENT-4-web-15gu05y.jpg

Rice University materials scientists have mapped the morphogenesis of cement hydrates used in concrete. Their work could lead to finer control of the microscopic shape of cement particles for the manufacture of stronger, more durable and more environmentally friendly concrete. (Credit: Multiscale Materials Laboratory/Rice University)

http://news.rice.edu/files/2016/12/1212_CEMENT-6-web-u01d5o.jpg

Rice University materials scientists have mapped the morphogenesis of cement hydrates used in concrete. It could lead to a way to “program” cement particles for the manufacture of stronger, more durable and more environmentally friendly concrete. (Credit: Multiscale Materials Laboratory/Rice University)

http://news.rice.edu/files/2016/12/1212_CEMENT-7-web-ps52n6.jpg

Rouzbeh Shahsavari (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read “What they're saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Media Contact

David Ruth EurekAlert!

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Molecular orientation is key

Shining new light on electron behavior using 2-photon photoemission spectroscopy. Understanding electron behavior and surface structure of triphenylene thin film molecules deposited on graphite substrates under light irradiation. Organic electronics…

Where quantum computers can score

The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin…

An innovative mixed light field technique for immersive projection mapping

A novel mixed light field technique that utilizes a mix of ray-controlled ambient lighting with projection mapping (PM) to obtain PM in bright surroundings has been developed by scientists at…

Partners & Sponsors