Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystallization frustration predicts metallic glass formation

02.08.2016

Research could pave the way for new strong, conductive materials

Researchers have discovered a way to predict which alloys will form metallic glasses. The research could pave the way for new strong, conductive materials.


This is a visual representation of the difference between an organized, crystalline structure and an amorphous glass structure.

Credit: Eric Perim Martins, Duke University

Metallic glasses are sometimes formed when molten metal is cooled too fast for its atoms to arrange in a structured, crystalline order. The result is a material with numerous desirable properties. Because they are metals, metallic glasses have high hardness and toughness and good thermal conductivity. Because their structure is disorganized, they are easy to process and shape and difficult to corrode. Thanks to these characteristics, metallic glasses are used in a wide array of applications, including electrical applications, nuclear reactor engineering, medical industries, structural reinforcement and razor blades.

While metallic glass has been around for decades, scientists have no clue which combinations of elements will form them. The only way to come up with new metallic glasses to date has been to cook up new recipes in the laboratory with only a few rules of thumb for guidance and hope for the best -- a costly endeavor in both time and money.

In a new study, however, researchers from Duke University, in collaboration with groups from Harvard University and Yale University, describe a method that can predict which binary alloys will form metallic glasses. Their technique involves computing and comparing the many pockets of different structures and energies that could be found within a solidified alloy.

The results were published August 2, 2016, in Nature Communications.

"When you get a lot of structures forming next to one another that are different but still have similar internal energies, you get a sort of frustration as the material tries to crystalize," said Eric Perim, a postdoctoral researcher working in the laboratory of Stefano Curtarolo, professor of mechanical engineering and materials science and director of the Center for Materials Genomics at Duke. "The material can't decide which crystalline structure it wants to converge to, and a metallic glass emerges. What we created is basically a measure of that confusion."

To determine the likelihood of an alloy forming a glass, Curtarolo, Perim and their colleagues broke its chemistry down into numerous sections, each containing only a handful of atoms. They then turned to a prototype database to simulate the hundreds of structures each section could potentially take.

Called the AFLOW library, the database stores information on atomic structures that are commonly observed in nature. Using these examples, the program computes what a novel combination of elements would look like with these structures. For example, the atomic structure of sodium chloride -- better known as salt -- may be used to build a potential structure for copper zirconium.

These simulations produce estimations of characteristics for hundreds of structural forms that a material could take. One characteristic, called an atomic environment, looks at the geometrical arrangement of an atom's closest neighbors. Another calculates the amount of energy stored in each of these atomic structures.

To determine the likelihood of an alloy forming a metallic glass, the program compares these two characteristics between the hundreds of different structures that could be found throughout the material. If groups of atoms near one another have similar energies, they want to form similar structures. But if the rapid cooling prevents this, a metallic glass emerges.

"The big advantage to our work is that it's high-throughput, because doing this experimentally is way too time-consuming," said Cormac Toher, an assistant research professor in Curtarolo's laboratory. "You cannot check all compositions of all systems in the laboratory. That would literally take forever. The idea behind this is that we can screen a large number of materials in a couple of days and single out the most likely ones that should be checked out."

The group then put their confusion-measuring program to the test to see if it could accurately predict metallic glasses that are already known. They were able to correctly identify 73 percent -- a number they hope will improve as they continue to increase the structural information and simulations stored in their database.

Based on their initial work, they believe about one-sixth of the alloys in their system should make metallic glass. That's more than 250 potential materials, of which only about a couple dozen have been discovered.

"If you go to Venice you'll see people blowing bottles of glass," said Curtarolo. "You can do that with metallic glasses as well. You can make lightweight, very durable objects without any seams. But trying to scale these up is difficult. The larger the lump, the longer it takes its center to cool, and the more likely it is to form a normal crystalline structure. But there might be undiscovered chemical combinations that would be easier to work with, cost less, or have other, more desirable properties. We just have to figure out where to look for them."

Besides refining their results for binary alloys, the researchers plan to extend their algorithm to alloys that contain three elements, as they are more likely to form glasses but are much more difficult and time-consuming to model. Their database, however, has only about one-tenth of the entries for these alloys as it does for binary alloys, so computer clusters around the world will first need to work for some time to come.

###

This research was supported by the National Science Foundation (DMR-1436151, DMR-1436268, DMR-1435820).

CITATION: "Spectral Descriptors for Bulk Metallic Glasses Based on the Thermodynamics of Competing Crystalline Phases." Eric Perim, Dongwoo Lee, Yanhui Liu, Cormac Toher, Pan Gong, Yanglin Li, W. Neal Simmons, Ohad Levy, Joost J. Vlassak, Jan Schroers and Stefano Curtarolo. Nature Communications, Aug. 2, 2016. DOI: 10.1038/NCOMMS12315

Media Contact

Ken Kingery
Ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>