Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal unclear: Why might this uncanny crystal change laser design?

29.08.2016

Laser applications may benefit from crystal research by scientists at the National Institute of Standards and Technology (NIST) and China's Shandong University. They have discovered a potential way to sidestep longstanding difficulties with making the crystals that are a crucial part of laser technology. But the science behind their discovery has experts scratching their heads.

The findings, published today in Science Advances, suggest that the relatively large crystals used to change several properties of light in lasers - changes that are crucial for making lasers into practical tools - might be created by stacking up far smaller, rod-shaped microcrystals that can be grown easily and cheaply.


These potassium diphosphate (KDP) crystals, which self-assemble in solution as hollow hexagonal rods, could find use in laser technology, particularly for fiber-optic communications. The scanning-electron image at right shows a crystal at higher resolution with scale added.

Credit: L. Deng / NIST

So far, the team's microcrystals outperform conventional crystals in some ways, suggesting that harnessing them could signal the end of a long search for a fast, economical way to develop large crystals that would otherwise be prohibitively expensive and time-consuming to create. But the microcrystals also challenge conventional scientific theory as to why they perform as they do.

The color you see in a laser's light is often different than the one it initially generates. Many lasers create infrared light, which then passes through a crystal converting its energy - and therefore its wavelength - to light of a visible color like green or blue.

Frequently, that crystal is made of potassium diphosphate (KDP), a common material that has properties that make it invaluable: Not only can a KDP crystal alter the light's color, but it also can act as a switch that changes the light's polarization (the direction in which its electric field vibrates) or prevent it from passing through the crystal until just the right moment. The data carried by laser light through fiber-optic cables depends on the light's polarization, and many applications depend on a laser pulse's timing.

Small KDP crystals are easy to make, and these find use in pocket laser pointers and telecommunications systems alike. But for higher-energy applications, scientists have searched for decades for a way to make large, high-quality crystals that can survive repeated exposure to intense laser pulses, but a solution has remained elusive.

The team has found useful results by growing KDP crystals in solution. These crystals take the form of hexagonal-shaped hollow tubes and long rods just a few micrometers wide. Individually, these KDP microcrystals have an energy-conversion efficiency surpassing even the best KDP crystals under the same conditions, raising the possibility of directly growing crystals for use in telecommunications.

The team also suggests the rods could be stacked up like firewood, building a larger piece out of billions of the tiny filaments. Before they are stacked together they could be coated by a thin layer of conductive material that carries heat away, rendering them capable of handling repeated pulses of high-intensity laser light - potentially broadening their application range if a way can be found to stack them.

The mystery is why the microcrystals perform as they do. Basic physics says they shouldn't.

Conventional physics models indicate that an optical medium like a crystal must not be symmetric about its center if it is to convert energy efficiently, yet these microcrystals appear to break this rule.

"We've spoken to a number of experts in different fields worldwide, and none of them can explain it," says NIST physicist Lu Deng. "Currently no theory can explain the initial growth mechanism of this exotic crystal. It's challenging our current understanding in fields from crystallography to condensed matter physics."

While theory catches up with data, Deng said the team is concentrating on the engineering challenges of growing stackable microcrystal rods.

"We can grow more than 1,000 microstructures every 10 minutes or so on a single glass slide, so growing a large amount is not a problem," he said. "What we need to figure out is how to grow a large fraction of them with nearly uniform cross-sections since that will be important in the final assembly stage."

Media Contact

Chad Boutin
boutin@nist.gov
301-975-4261

 @usnistgov

http://www.nist.gov 

Chad Boutin | EurekAlert!

More articles from Materials Sciences:

nachricht Transporting spin: A graphene and boron nitride heterostructure creates large spin signals
16.08.2017 | Graphene Flagship

nachricht From hot to cold: How to move objects at the nanoscale
10.08.2017 | Scuola Internazionale Superiore di Studi Avanzati

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>