Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling phase changes in solids

29.07.2015

A recent study demonstrates the rapid control of phase-changes in resonantly bonded materials

Rewritable CDs, DVDs and Blu-Ray discs owe their existence to phase-change materials, those materials that change their internal order when heated and whose structures can be switched back and forth between their crystalline and amorphous phases.


Schematic of the ultrafast transformation pathway.

Credit: ICFO/Fritz-Haber-Inst. MPG/SUTD

Phase-change materials have even more exciting applications on the horizon, but our limited ability to precisely control their phase changes is a hurdle to the development of new technology.

One of the most popular and useful phase-change materials is GST, which consists of germanium, antimony, and tellurium. This material is particularly useful because it alternates between its crystalline and amorphous phases more quickly than any other material yet studied.

These phase changes result from changes in the bonds between atoms, which also modify the electronic and optical properties of GST as well as its lattice structure. Specifically, resonant bonds, in which electrons participate in several neighboring bonds, influence the material's electro-optical properties, while covalent bonds, in which electrons are shared between two atoms, influence its lattice structure.

Most techniques that use GST simultaneously change both the electro-optical and structural properties. This is actually a considerable drawback since in the process of repeating structural transitions, such as heating and cooling the material, the lifetime of any device based on this material is drastically reduced.

In a study recently published in Nature Materials, researchers from the ICFO groups led by Prof. Simon Wall and ICREA Prof. at ICFO Valerio Pruneri, in collaboration with the Firtz-Haber-Institut der Max-Planck-Gesellschaft, have demonstrated how the material and electro-optical properties of GST change over fractions of a trillionth of a second as the phase of the material changes.

Laser light was successfully used to alter the bonds controlling the electro-optical properties without meaningfully altering the bonds controlling the lattice. This new configuration allowed the rapid, reversible changes in the electro-optical properties that are important in device applications without reducing the lifetime of the device by changing its lattice structure.

Moreover, the change in the electro-optical properties of GST measured in this study is more than ten times greater than that previously achieved by silicon materials used for the same purpose. This finding suggests that GST may be a good substitute for these commonly used silicon materials.

The results of this study may be expected to have far-reaching implications for the development of new technologies, including flexible displays, logic circuits, optical circuits, and universal memory for data storage. These results also indicate the potential of GST for other applications requiring materials with large changes in optical properties that can be achieved rapidly and with high precision.

Media Contact

Alina Hirschmann
alina.hirschmann@icfo.eu
34-935-542-246

http://www.icfo.es 

Alina Hirschmann | EurekAlert!

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>