Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling Electromagnetic Radiation by Graphene

27.11.2015

An international team of scientists from the University of Exeter, UK, Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland, and the University of Augsburg has demonstrated how the extraordinary properties of graphene can be exploited to create artificial structures that can be used to control and manipulate electromagnetic radiation over a wide range of wavelengths.

A collaborative international team consisting of two experimental groups, led by Professor Geoffrey Nash from the University of Exeter and Professor Jérôme Faist from the Swiss Federal Institute of Technology in Zurich, and of a theoretical group of Privatdozent Dr. Sergey Mikhailov from the University of Ausgburg, have engineered and investigated a remarkable new hybrid structure, or metamaterial, that possesses specific characteristics that are not found in natural materials.


A hybrid metamaterial structure designed in this work consists of an array of metallic (Au) split-ring resonators combined with graphene nano-ribbons placed between metallic elements.

© Isaac Luxmoore/University of Exeter

The team combined nano-ribbons of graphene together with a type of metallic antenna called a split ring resonator. Electrons in graphene are able to oscillate across the ribbon, performing so called plasma oscillations. Electrons in the metallic split-ring elements also oscillate with their own frequency.

These two types of oscillations interact with each other, with the interaction strength which can be controlled by the voltage applied between the graphene stripes and the back-side metallic contact. Careful design of these two elements leads to a system in which the hybrid plasma oscillations strongly interact with electromagnetic radiation.

As a result, the transmission of radiation through the structure can be controlled and manipulated by the electric voltage applied to it. The new structure can be thus used as a type of the terahertz-wave switch to interrupt, and turn on and off, a beam of this light very quickly.

The operation of this light modulator was demonstrated at the frequencies of several terahertz. The corresponding radiation wavelengths are very long, far beyond what the human eye can see. An important characteristic of the new structure is that it has the effect of focussing the electromagnetic radiation into an area much smaller than its wavelength. This could potentially lead to new ways of undertaking spectroscopic methods with ultra-high resolution.

The novel results obtained by the team could form the basis of a range of technologically important components. They are published in the respected scientific journal Nature Communications. This research work was carried out within the European FET Open Project GOSFEL ( www.gosfel.eu ), which aims to develop an entirely new laser source for many different applications in security, medicine, telecommunication, gas sensing, and so on. The Augsburg group also investigates nonlinear electrodynamic properties of graphene within another, large European research Program Graphene Flagship, with the goal to use them in different electronic and optoelectronic applications.

Publication:
Peter Q. Liu, Isaac J. Luxmoore, Sergey A. Mikhailov, Nadja A. Savostianova, Federico Valmorra, Jerome Faist, Geoffrey R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons”, Nature Communications 6, 8969 (2015).
http://www.nature.com/ncomms/2015/151120/ncomms9969/full/ncomms9969.html

Contact:
PD Dr. Sergey Mikhailov
Institut für Physik der Universität Augsburg
86135 Augsburg

Telefon +49(0)821-598-3255
sergey.mikhailov@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/lehrstuehle/theo2/team/mikhailov/

Weitere Informationen:

http://www.nature.com/ncomms/2015/151120/ncomms9969/full/ncomms9969.html
http://www.gosfel.eu
http://www.graphene-flagship.eu

Klaus P. Prem Presse | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>