Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015

New material with a layered, atomic sandwich structure has unique optoelectronic properties.

The Science


Image courtesy of University of Washington

Optical microscope image of triangular-shaped metal-diselenide monolayer hetero-structures. The central portion containing molybdenum atoms appears darker than the outer portion with tungsten atoms. Inset is a photoluminescence intensity map showing that the linear junction region along the triangular interface produces enhanced light emission (red region).

Newswise — A new semiconducting material that is only three atomic layers thick that exhibits electronic properties beyond traditional semiconductors has been developed. Two nano-engineered configurations of the material have shown an enhanced response to light.

The Impact

Layered materials at the atomic limit, where electrons are constrained to two dimensions, can be engineered into electronic structures with unique optical, electronic, and magnetic properties. The new structures are a test bed for theories of low dimensional materials physics, but more practically, the optical manipulation of electron charge and magnetic order can lead to new modes of solar energy conversion and flexible, transparent computation devices.

Summary

A new ultra-thin semiconducting material consists of three atomic layers in an “atomic sandwich” configuration with a heavy metal atom layer between two selenium layers. The material is quasi-two dimensional, just three atoms thick, and exhibits unique properties at junctions. When the material is exposed to light and absorbs photons, excited electrons are created which remain coherently coupled, in unique ways, with the charge “hole” they left behind. Stacking up two “atomic sandwiches” yields coupled excited charge states across the planar interface with the magnetic direction or “spin state” becoming aligned for a large population of electrons. A companion result by the same research group demonstrated a method to make the edge of one metal layer match up with the edge of a second, different metal layer -- a linear boundary or “hetero-junction” rather than the more typical planar boundary. Engineered electron spin and charge polarization, as well as transport across or along the interface, might be possible as evidenced by the enhanced photoluminescence signals at these positions.

Funding

Primary support by the DOE Office of Science, Basic Energy Sciences. Some students were supported by graduate student fellowships and doctoral training grants (NSF, EPSRC, HEFCE, and Cottrell Scholar Award). Some researchers were supported by the Hong Kong Research Grant Council, the Croucher Foundation, the Science City Research Alliance and the University of Washington Clean Energy Institute.

Publications

A.M. Jones, H. Yu, J.S. Ross, P. Klement, N.J. Ghimire, J. Yan, D.G. Mandrus, W. Yao, X. Xu, “Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2.” Nature Physics 10, 130–134 (2014). [DOI: 10.1038/nphys2848]

C. Huang, S. Wu, A.M. Sanchez, J.J.P. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors.” Nature Materials 13, 1096–1101 (2014). [DOI: 10.1038/NMAT4064]

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>