Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computers create recipe for two new magnetic materials

18.04.2017

Magnets built atom-by-atom in first effort of its kind

Material scientists have predicted and built two new magnetic materials, atom-by-atom, using high-throughput computational models. The success marks a new era for the large-scale design of new magnetic materials at unprecedented speed.


This is a microscopic look at the atomic structure of a manganese-platinum-palladium mixture (Mn2PtPd), that is one of the newly predicted and manufactured magnetic materials. Each color shows the distribution of a different element. The uniformity for each material -- with the exception the small spots indicating a different phase state -- matches the predictions for a stable three-element material.

Credit: Pelin Tozman, AMBER and CRANN Institute, Trinity College, Dublin, Ireland

Although magnets abound in everyday life, they are actually rarities -- only about five percent of known inorganic compounds show even a hint of magnetism. And of those, just a few dozen are useful in real-world applications because of variability in properties such as effective temperature range and magnetic permanence.

The relative scarcity of these materials can make them expensive or difficult to obtain, leading many to search for new options given how important magnets are in applications ranging from motors to magnetic resonance imaging (MRI) machines. The traditional process involves little more than trial and error, as researchers produce different molecular structures in hopes of finding one with magnetic properties. Many high-performance magnets, however, are singular oddities among physical and chemical trends that defy intuition.

In a new study, materials scientists from Duke University provide a shortcut in this process. They show the capability to predict magnetism in new materials through computer models that can screen hundreds of thousands of candidates in short order. And, to prove it works, they've created two magnetic materials that have never been seen before.

The results appear April 14, 2017, in Science Advances.

"Predicting magnets is a heck of a job and their discovery is very rare," said Stefano Curtarolo, professor of mechanical engineering and materials science and director of the Center for Materials Genomics at Duke. "Even with our screening process, it took years of work to synthesize our predictions. We hope others will use this approach to create magnets for use in a wide range of applications."

The group focused on a family of materials called Heusler alloys -- materials made with atoms from three different elements arranged in one of three distinct structures. Considering all the possible combinations and arrangements available using 55 elements, the researchers had 236,115 potential prototypes to choose from.

To narrow the list down, the researchers built each prototype atom-by-atom in a computational model. By calculating how the atoms would likely interact and the energy each structure would require, the list dwindled to 35,602 potentially stable compounds.

From there, the researchers conducted a more stringent test of stability. Generally speaking, materials stabilize into the arrangement requiring the least amount of energy to maintain. By checking each compound against other atomic arrangements and throwing out those that would be beat out by their competition, the list shrank to 248.

Of those 248, only 22 materials showed a calculated magnetic moment. The final cut dropped any materials with competing alternative structures too close for comfort, leaving a final 14 candidates to bring from theoretical model into the real world.

But as most things in a laboratory turn out, synthesizing new materials is easier said than done.

"It can take years to realize a way to create a new material in a lab," said Corey Oses, a doctoral student in Curtarolo's laboratory and second author on the paper. "There can be all types of constraints or special conditions that are required for a material to stabilize. But choosing from 14 is a lot better than 200,000."

For the synthesis, Curtarolo and Oses turned to Stefano Sanvito, professor of physics at Trinity College in Dublin, Ireland. After years of attempting to create four of the materials, Sanvito succeeded with two.

Both were, as predicted, magnetic.

The first newly minted magnetic material was made of cobalt, magnesium and titanium (Co2MnTi). By comparing the measured properties of similarly structured magnets, the researchers were able to predict the new magnet's properties with a high degree of accuracy. Of particular note, they predicted the temperature at which the new material lost its magnetism to be 940 K (1232 degrees Fahrenheit). In testing, the actual "Curie temperature" turned out to be 938 K (1228 degrees Fahrenheit) -- an exceptionally high number. This, along with its lack of rare earth elements, makes it potentially useful in many commercial applications.

"Many high-performance permanent magnets contain rare earth elements," said Oses. "And rare earth materials can be expensive and difficult to acquire, particularly those that can only be found in Africa and China. The search for magnets free of rare-earth materials is critical, especially as the world seems to be shying away from globalization."

The second material was a mixture of manganese, platinum and palladium (Mn2PtPd), which turned out to be an antiferromagnet, meaning that its electrons are evenly divided in their alignments. This leads the material to have no internal magnetic moment of its own, but makes its electrons responsive to external magnetic fields.

While this property doesn't have many applications outside of magnetic field sensing, hard drives and Random Access Memory (RAM), these types of magnets are extremely difficult to predict. Nevertheless, the group's calculations for its various properties remained spot on.

"It doesn't really matter if either of these new magnets proves useful in the future," said Curtarolo. "The ability to rapidly predict their existence is a major coup and will be invaluable to materials scientists moving forward."

###

This work was supported by the Science Foundation of Ireland, the EU Commission and the National Science Foundation (DGF1106401).

"Accelerated discovery of new magnets in the Heusler alloy family." Stefano Sanvito, Corey Oses, Junkai Xue, Anurag Tiwariy, Mario Zic, Thomas Archer, Pelin Tozman, Munuswamy Venkatesan, J. Michael D. Coey, and Stefano Curtarolo. Science Advances, April 14, 2017. DOI: 10.1126/sciadv.1602241

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>