Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational high-throughput screening finds hard magnets containing less rare earth elements

25.05.2016

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of thorium-manganese crystalline structure.


Left: the crystal structure of thorium manganese (ThMn12) with atoms of neodymium (blue balls) has better magnetic properties than super magnets, though is unstable; right: more stable structure.

The image © Fraunhofer Institute for Mechanics of Materials IWM

“The neodymium-iron-nitrogen compound we used has better magnetic properties than current super magnets made of neodymium, iron, and boron,” explains Georg Krugel, though the material is apparently not yet stable, having only been produced in thin layers up to now.

The goal of the group Materials Modeling’s project was to identify a new permanent magnet that exhibits the same or better magnetic properties, such as strength and directional stability, as well as the required material stability. Differing atoms in the crystal structure were systematically varied across a range of values using the new HTS process.

The researchers initially replaced the neodymium atoms with other rare earth elements such as cerium, which is considerably more economical. They then substituted iron partially by transition metals like cobalt, nickel, and titanium as well as by other elements like silicon. The HTS produced 1,280 variations this way that the researchers analyzed with respect to their properties.

Concentration on material stability, strength, and directional stability of the magnetization

“We concentrated on three properties quite important for applications during our analyses of the variations in materials,” explains Krugel. The researchers first examined the stability of the material, which could be estimated from the energy of formation. The second important aspect is the maximum attainable energy product, which allows the strength of the magnet to be estimated. The energy of anisotropy, which is a measure of the directional stability of the magnetization, is also very important for the intended application. The researchers were able to identify twelve especially promising candidates from among the 1280 variations this way.

Validation with the help of existing experimental magnetic materials

The pivotal question of course is whether the calculated properties of the variations in materials created in the computer correspond to reality. The researchers therefore additionally validated them against existing permanent magnets. The results confirmed the predictive power of the model for the magnetic properties of the HTS candidates.

General trends

Besides identifying promising approaches in materials for new permanent magnets, the researchers were able to ascertain important general trends through their work. “It was evident that cerium and neodymium are better suited on the whole than samarium," according to Krugel. Cerium in particular exhibited extremely high anistropy. Among the transition metals, the researchers were able to increase the predictability of titanium’s suitability especially.

“While transition metals reduce the strength of the magnet, they increase its directional stability considerably as well," Krugel summarizes. Valid predictions can also now be made for atoms additionally incorporated into the crystal lattice. Nitrogen and carbon are better suited than boron utlilized in current supermagnets.

New kinds of magnets might be able to be made experimentally based on the predictions of the new HTS approach. Computer-aided predictions offer an avenue for industry to identify and improve materials required to have specific properties.

Publication:
Körner, W. et al. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content. Sci. Rep. 6, 24686; doi: 10.1038/srep24686 (2016).

Weitere Informationen:

http://www.nature.com/articles/srep24686 - link to publication
http://www.en.iwm.fraunhofer.de/business-units/materials-design/materials-modeli... - link to group Materials Modeling

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

Further reports about: Fraunhofer-Institut HTS IWM magnetization neodymium rare earth elements

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>