Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational high-throughput screening finds hard magnets containing less rare earth elements

25.05.2016

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of thorium-manganese crystalline structure.


Left: the crystal structure of thorium manganese (ThMn12) with atoms of neodymium (blue balls) has better magnetic properties than super magnets, though is unstable; right: more stable structure.

The image © Fraunhofer Institute for Mechanics of Materials IWM

“The neodymium-iron-nitrogen compound we used has better magnetic properties than current super magnets made of neodymium, iron, and boron,” explains Georg Krugel, though the material is apparently not yet stable, having only been produced in thin layers up to now.

The goal of the group Materials Modeling’s project was to identify a new permanent magnet that exhibits the same or better magnetic properties, such as strength and directional stability, as well as the required material stability. Differing atoms in the crystal structure were systematically varied across a range of values using the new HTS process.

The researchers initially replaced the neodymium atoms with other rare earth elements such as cerium, which is considerably more economical. They then substituted iron partially by transition metals like cobalt, nickel, and titanium as well as by other elements like silicon. The HTS produced 1,280 variations this way that the researchers analyzed with respect to their properties.

Concentration on material stability, strength, and directional stability of the magnetization

“We concentrated on three properties quite important for applications during our analyses of the variations in materials,” explains Krugel. The researchers first examined the stability of the material, which could be estimated from the energy of formation. The second important aspect is the maximum attainable energy product, which allows the strength of the magnet to be estimated. The energy of anisotropy, which is a measure of the directional stability of the magnetization, is also very important for the intended application. The researchers were able to identify twelve especially promising candidates from among the 1280 variations this way.

Validation with the help of existing experimental magnetic materials

The pivotal question of course is whether the calculated properties of the variations in materials created in the computer correspond to reality. The researchers therefore additionally validated them against existing permanent magnets. The results confirmed the predictive power of the model for the magnetic properties of the HTS candidates.

General trends

Besides identifying promising approaches in materials for new permanent magnets, the researchers were able to ascertain important general trends through their work. “It was evident that cerium and neodymium are better suited on the whole than samarium," according to Krugel. Cerium in particular exhibited extremely high anistropy. Among the transition metals, the researchers were able to increase the predictability of titanium’s suitability especially.

“While transition metals reduce the strength of the magnet, they increase its directional stability considerably as well," Krugel summarizes. Valid predictions can also now be made for atoms additionally incorporated into the crystal lattice. Nitrogen and carbon are better suited than boron utlilized in current supermagnets.

New kinds of magnets might be able to be made experimentally based on the predictions of the new HTS approach. Computer-aided predictions offer an avenue for industry to identify and improve materials required to have specific properties.

Publication:
Körner, W. et al. Theoretical screening of intermetallic ThMn12-type phases for new hard-magnetic compounds with low rare earth content. Sci. Rep. 6, 24686; doi: 10.1038/srep24686 (2016).

Weitere Informationen:

http://www.nature.com/articles/srep24686 - link to publication
http://www.en.iwm.fraunhofer.de/business-units/materials-design/materials-modeli... - link to group Materials Modeling

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM

Further reports about: Fraunhofer-Institut HTS IWM magnetization neodymium rare earth elements

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>