Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clothing with a sensory cooling effect / Development of textiles with a sensory cooling effect

13.09.2016

As part of a research project, scientists at the Hohenstein Institute in Boennigheim have been developing and investigating a textile finish that provides a sensory cooling effect. This textile finish has a lasting mild cooling effect and it is especially useful for example, when treating sports injuries, or after insect bites or for other therapeutic purposes.

As part of an IGF research project (AiF No. 18181 N), scientists at the Hohenstein Institute in Boennigheim have been developing and analysing a textile finish that provides a sensory cooling effect. Sensory cooling is the term used to describe a chemically induced sensation of coolness on the skin, due to the triggering of cold receptors in the nerve ends close to the surface of the skin. This is different from the cooling effect normally achieved by physical processes, where the skin is cooled mainly by the evaporation of water.


Fig. 1: Thermogram of the underarm

© Hohenstein Institute

Targeted cooling of the surface of the skin is required, for example, when treating sports injuries, or after insect bites or for other therapeutic purposes (e.g. in the treatment of multiple sclerosis or psoriasis). Cold water, ice cubes, sprays and cooling, water-retaining medicaments can be used for this purpose. Cooling textiles made from high-tech fibres are also based partly on the principle of cooling by evaporation.

However, with commonly used cooling systems such as cool packs or ice sprays, the skin is often cooled down too much. In the worst cases, this can lead to symptoms of frost-bite and the formation of blisters which increase the damage to the skin. Unlike these conventional cooling methods, cold-inducing substances that result in "sensory cooling" have a mild cooling effect, even when spread over a large area, without over-cooling the skin. One example of this would be the peppermint substance "menthol".

This has a cooling effect and soothes itching. Now a whole range of other chemical substances have been discovered which, like menthol, bind themselves to the cold receptors. These substances trigger a stronger cooling sensation, are odour-neutral and have a longer-lasting effect. This means they can be used for therapeutic purposes.

In their research project, the scientists at Hohenstein have, for the first time, developed a finish for textiles that creates a sensory cooling effect. This textile finish is based on p-menthane derivatives (agonists) such as WS-3 (N-ethyl-p-menthane-3-carboxamide) or L-menthyl lactate and icilin. These substances have the advantage that, when spread in very low concentrations on small areas of the body, they have a lasting mild cooling effect throughout their period of activity. This kind of sensory cooling textile finish was tested on different textile substrates made from natural or synthetic fibres and blends, and in concentrations of the active ingredient ranging from 0.1‰ – 1%.

In tests with volunteers, the attempts at functionalising textiles using substances which have a sensory cooling effect produced very different sensory perceptions of the degree of coolness. The sensory perception of cold depended not only on the area of skin being treated but also on a range of other parameters such as the moisture level in the skin and the topography of the skin surface. The way the perceived cooling effect on the skin is processed and assessed depends on numerous external and internal factors and is therefore subjective, i.e. each volunteer perceives the cooling effect in their own quite specific, individual way. During the project, the researchers were able to make new findings about the substance sensitivity of specific areas of the skin (e.g. the cleavage, underarm, soles of the feet). The project also showed that sensory cooling textiles are effective in textiles worn close to the skin, but are unsuitable for loosely cut clothing that is not in direct contact with the body.

At the end of the research project, the scientists at the Hohenstein Institute were able to show that applying a finish containing sensory cooling substances (WS-3 or menthyl lactate) would be feasible for SMEs. Following the positive results for textiles worn next to the skin, further investigations are likely to reveal new applications for therapeutic textiles.

For more information on this research project, please contact:
Christin Glöckner
Phone: +49 7143 271 445
E-mail: C.Gloeckner@hohenstein.de

Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_135488.xhtml

Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>