Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clothing with a sensory cooling effect / Development of textiles with a sensory cooling effect

13.09.2016

As part of a research project, scientists at the Hohenstein Institute in Boennigheim have been developing and investigating a textile finish that provides a sensory cooling effect. This textile finish has a lasting mild cooling effect and it is especially useful for example, when treating sports injuries, or after insect bites or for other therapeutic purposes.

As part of an IGF research project (AiF No. 18181 N), scientists at the Hohenstein Institute in Boennigheim have been developing and analysing a textile finish that provides a sensory cooling effect. Sensory cooling is the term used to describe a chemically induced sensation of coolness on the skin, due to the triggering of cold receptors in the nerve ends close to the surface of the skin. This is different from the cooling effect normally achieved by physical processes, where the skin is cooled mainly by the evaporation of water.


Fig. 1: Thermogram of the underarm

© Hohenstein Institute

Targeted cooling of the surface of the skin is required, for example, when treating sports injuries, or after insect bites or for other therapeutic purposes (e.g. in the treatment of multiple sclerosis or psoriasis). Cold water, ice cubes, sprays and cooling, water-retaining medicaments can be used for this purpose. Cooling textiles made from high-tech fibres are also based partly on the principle of cooling by evaporation.

However, with commonly used cooling systems such as cool packs or ice sprays, the skin is often cooled down too much. In the worst cases, this can lead to symptoms of frost-bite and the formation of blisters which increase the damage to the skin. Unlike these conventional cooling methods, cold-inducing substances that result in "sensory cooling" have a mild cooling effect, even when spread over a large area, without over-cooling the skin. One example of this would be the peppermint substance "menthol".

This has a cooling effect and soothes itching. Now a whole range of other chemical substances have been discovered which, like menthol, bind themselves to the cold receptors. These substances trigger a stronger cooling sensation, are odour-neutral and have a longer-lasting effect. This means they can be used for therapeutic purposes.

In their research project, the scientists at Hohenstein have, for the first time, developed a finish for textiles that creates a sensory cooling effect. This textile finish is based on p-menthane derivatives (agonists) such as WS-3 (N-ethyl-p-menthane-3-carboxamide) or L-menthyl lactate and icilin. These substances have the advantage that, when spread in very low concentrations on small areas of the body, they have a lasting mild cooling effect throughout their period of activity. This kind of sensory cooling textile finish was tested on different textile substrates made from natural or synthetic fibres and blends, and in concentrations of the active ingredient ranging from 0.1‰ – 1%.

In tests with volunteers, the attempts at functionalising textiles using substances which have a sensory cooling effect produced very different sensory perceptions of the degree of coolness. The sensory perception of cold depended not only on the area of skin being treated but also on a range of other parameters such as the moisture level in the skin and the topography of the skin surface. The way the perceived cooling effect on the skin is processed and assessed depends on numerous external and internal factors and is therefore subjective, i.e. each volunteer perceives the cooling effect in their own quite specific, individual way. During the project, the researchers were able to make new findings about the substance sensitivity of specific areas of the skin (e.g. the cleavage, underarm, soles of the feet). The project also showed that sensory cooling textiles are effective in textiles worn close to the skin, but are unsuitable for loosely cut clothing that is not in direct contact with the body.

At the end of the research project, the scientists at the Hohenstein Institute were able to show that applying a finish containing sensory cooling substances (WS-3 or menthyl lactate) would be feasible for SMEs. Following the positive results for textiles worn next to the skin, further investigations are likely to reveal new applications for therapeutic textiles.

For more information on this research project, please contact:
Christin Glöckner
Phone: +49 7143 271 445
E-mail: C.Gloeckner@hohenstein.de

Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_135488.xhtml

Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>