Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic particles supply digital X-ray plates “from an aerosol can”

02.12.2015

Digital X-ray systems have become a vital part of health care. The analog X-ray film of the past has been replaced by digital flat panel detectors. Today's detectors are sensitive but quite expensive and have limited resolution.

Now, scientists collaborating in project HOP-X have succeeded in developing new materials for detectors: they embedded ceramic particles in a conductive plastic. The components of these “composite detectors” can be stirred into a solvent and then applied like paint by spraying. This means that, in future, it might be possible to manufacture X-ray detectors inexpensively and on a large scale with greater image resolution.


Distribution of the ceramic particles in the plastic visualized by electron microscopy.

Source: INM; only free within this press release

These results were recently published in the magazine “Nature Photonics”.

X-ray detectors consist of a scintillator layer and a photodiode. The scintillator layer converts X-rays into visible light which the photodiode absorbs. Such detectors are difficult to manufacture and expensive.

Their resolution is limited because the signals received can interfere with each other. In order to manufacture X-ray detectors at lower cost, scientists from Siemens Healthcare GmbH, the INM –Leibniz Institute for New Materials, the CAN GmbH, the Universities of Erlangen and further partners took a new approach in the project HOP-X: they used materials developed for flexible solar cells and adapted them to the X-rays.

For this purpose, the scientists at INM manufactured ceramic particles which light up when X-rays hit them. They embedded these in a conductive plastic. It converts the light into an electric current which is registered by the X-ray apparatus. The researchers investigated the composite material formed by the particles and the plastic.

“We examined the samples with electron microscopy using thin layers cut out of the composite with ion beams,” explains Tobias Kraus, Division Head for Structure Formation at INM. “The images we got show how the particles arrange inside the plastic at different mixing ratios. This enabled our partners to select the mixing ratios to make the most sensitive of X-ray detectors.” The optimized materials yield high-resolution X-ray images already at a low radiation dosage.

The results show that X-ray detectors made of new composite materials can fulfill the strict requirements of medical technology. The researchers are currently working on process techniques to allow the manufacture of larger detectors.

Background:
Besides the INM, Siemens Healthcare GmbH, Merck KgaA and CAN GmbH participated in the HOP-X project. The three-year collaborative project HOP-X, which was concluded in autumn 2015, received financial assistance from the German Federal Ministry of Education and Research to the amount of 1.86 million euros.

Original publications:
Patric Büchele, Moses Richter, Sandro F. Tedde, Gebhard J. Matt, Genesis N. Ankah, Rene Fischer, Markus Biele, Wilhelm Metzger, Samuele Lilliu, Oier Bikondoa, J. Emyr Macdonald, Christoph J. Brabec, Tobias Kraus, Uli Lemmer, Oliver Schmidt: „X-ray imaging with scintillator-sensitized hybrid organic photodetectors“; Nature Photonics, DOI: 10.1038/nphoton.2015.216

Your expert at the INM:
Dr. Tobias Kraus
INM – Leibniz Institute for New Materials
Head Structure Formation
Deputy Head InnovationCenter INM
Tel.: +49 681-9300-389
tobias.kraus@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 210 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en
http://www.leibniz-gemeinschaft.de/en/home/

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: Ceramic HOP-X INM Nature Photonics Neue Materialien X-rays manufacture

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>