Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carving out a golden opportunity

04.12.2014

Upsetting the stability of super-small gold clusters generates multifaceted nanocrystals with potent catalytic properties

A*STAR researchers have devised a way to destabilize gold nanoclusters so that they form tiny atomic nuclei that then grow together into perfectly proportioned, 12-sided dodecahedron crystals[1]. These unique polyhedra have energy-rich surfaces that can boost the catalytic efficiency of important chemical reactions and serve as potential adsorption sites for targeted sensor devices.


Extraordinary 12-sided gold nanocrystals can now be synthesized from gold nanoclusters using a destabilization technique based on hydrogen peroxide.

Modified, with permission, from Ref. 1 © 2014 Wiley-VCH

Typically, gold nanoclusters are prepared by chemically reducing a gold–sulfur precursor in the presence of an organic stabilizing agent. This procedure creates a symmetric core of gold atoms protected by a thin layer of surface groups known as thiolates. Researchers have developed many techniques for varying the size of the nanoclusters to tune their chemical and physical properties. But destabilizing gold-thiolate bonds to enable further transformations into polyhedral crystals has proved more challenging.

To tackle this issue, an interdisciplinary team led by Yong-Wei Zhang from the Institute of High Performance Computing and Ming-Yong Han from the Institute of Materials Research and Engineering at A*STAR in Singapore investigated strategies to destabilize gold clusters by oxidizing the surface-protecting thiolates. While promising, this approach has its risks: previous attempts using ozone destabilization agents produced uncontrolled aggregation of gold atoms into macroscopic precipitates.

The researchers examined if switching to a milder hydrogen peroxide destabilization agent would give more favorable results. They first synthesized a solution of 25-atom gold clusters stabilized by outer layers of bovine serum albumin (BSA). When hydrogen peroxide was added to the mixture, the team’s mass spectrometry instruments showed that covalent gold–sulfur bonds slowly ruptured.

This peroxide-based destabilization initially produced smaller 11-atom gold clusters. But after sitting for nearly a week at room temperature, these clusters transformed into remarkable dodecahedron shapes (see image).

High-resolution scanning electron microscopy revealed that every facet on the dodecahedra had identical crystallographic orientations — a rare distribution of gold atoms known as a [110] facet. Density functional theory calculations initiated by co-author Guijian Guan showed that these unusual structures arise when amino acids liberated from BSA during the destabilization reaction attach to the nanoparticles and promote growth in every crystal direction except the [110] orientation.

Guan explains that because [110] facets have the highest surface energies among standard gold facets, they present strong attractive forces to incoming molecules — a phenomenon that improves the catalytic capacity due to a stronger binding affinity to target molecules. “For example, we observed a four-fold enhancement in catalytic ability for our dodecahedra compared to gold nanoparticles during the reduction of 4-nitrophenol to 4-aminophenol,” he notes.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing and the Institute of Materials Research and Engineering. More information about the group’s research can be found on the Engineering Mechanics webpage.

Reference:
[1] Guan, G., Liu, S., Cai, Y., Low, M., Bharathi, M. S. et al. Destabilization of gold clusters for controlled nanosynthesis: From clusters to polyhedra. Advanced Materials 26, 3427–3432 (2014).

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7118
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>