Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carving out a golden opportunity

04.12.2014

Upsetting the stability of super-small gold clusters generates multifaceted nanocrystals with potent catalytic properties

A*STAR researchers have devised a way to destabilize gold nanoclusters so that they form tiny atomic nuclei that then grow together into perfectly proportioned, 12-sided dodecahedron crystals[1]. These unique polyhedra have energy-rich surfaces that can boost the catalytic efficiency of important chemical reactions and serve as potential adsorption sites for targeted sensor devices.


Extraordinary 12-sided gold nanocrystals can now be synthesized from gold nanoclusters using a destabilization technique based on hydrogen peroxide.

Modified, with permission, from Ref. 1 © 2014 Wiley-VCH

Typically, gold nanoclusters are prepared by chemically reducing a gold–sulfur precursor in the presence of an organic stabilizing agent. This procedure creates a symmetric core of gold atoms protected by a thin layer of surface groups known as thiolates. Researchers have developed many techniques for varying the size of the nanoclusters to tune their chemical and physical properties. But destabilizing gold-thiolate bonds to enable further transformations into polyhedral crystals has proved more challenging.

To tackle this issue, an interdisciplinary team led by Yong-Wei Zhang from the Institute of High Performance Computing and Ming-Yong Han from the Institute of Materials Research and Engineering at A*STAR in Singapore investigated strategies to destabilize gold clusters by oxidizing the surface-protecting thiolates. While promising, this approach has its risks: previous attempts using ozone destabilization agents produced uncontrolled aggregation of gold atoms into macroscopic precipitates.

The researchers examined if switching to a milder hydrogen peroxide destabilization agent would give more favorable results. They first synthesized a solution of 25-atom gold clusters stabilized by outer layers of bovine serum albumin (BSA). When hydrogen peroxide was added to the mixture, the team’s mass spectrometry instruments showed that covalent gold–sulfur bonds slowly ruptured.

This peroxide-based destabilization initially produced smaller 11-atom gold clusters. But after sitting for nearly a week at room temperature, these clusters transformed into remarkable dodecahedron shapes (see image).

High-resolution scanning electron microscopy revealed that every facet on the dodecahedra had identical crystallographic orientations — a rare distribution of gold atoms known as a [110] facet. Density functional theory calculations initiated by co-author Guijian Guan showed that these unusual structures arise when amino acids liberated from BSA during the destabilization reaction attach to the nanoparticles and promote growth in every crystal direction except the [110] orientation.

Guan explains that because [110] facets have the highest surface energies among standard gold facets, they present strong attractive forces to incoming molecules — a phenomenon that improves the catalytic capacity due to a stronger binding affinity to target molecules. “For example, we observed a four-fold enhancement in catalytic ability for our dodecahedra compared to gold nanoparticles during the reduction of 4-nitrophenol to 4-aminophenol,” he notes.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing and the Institute of Materials Research and Engineering. More information about the group’s research can be found on the Engineering Mechanics webpage.

Reference:
[1] Guan, G., Liu, S., Cai, Y., Low, M., Bharathi, M. S. et al. Destabilization of gold clusters for controlled nanosynthesis: From clusters to polyhedra. Advanced Materials 26, 3427–3432 (2014).

A*STAR Research | ResearchSEA
Further information:
http://www.research.a-star.edu.sg/research/7118
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>