Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biomimetic dental prosthesis


There are few tougher, more durable structures in nature than teeth or seashells. The secret of these materials lies in their unique fine structure: they are composed of different layers in which numerous micro-platelets are joined together, aligned in identical orientation.

The left structure is showing the natural tooth in its gypsum mold, the middle structure is the artificial tooth (sintered but not yet polymer infiltrated). The model on the right has been sintered and polymer infiltrated. It is embedded in a "puck" to enable polishing and coated with platinum to prevent charging in the electron microscope.

Photo: Tobias Niebel/ETH Zurich

Although methods exist that allow material scientists to imitate nacre, it was a challenge to create a material that imitates the entire seashell, with comparable properties and structural complexity.

Now a group of researchers led by André Studart, Professor of Complex Materials, has developed a new procedure that mimics the natural model almost perfectly. The scientists were able to produce a tough, multi-layered material based on the construction principle of teeth or seashells, and which compares well. The ETH researchers managed, for the first time, to preserve multiple layers of micro-platelets with differing orientation in a single piece.

It is a procedure the ETH researchers call magnetically assisted slip casting (MASC). "The wonderful thing about our new procedure is that it builds on a 100-year-old technique and combines it with modern material research," says Studart's doctoral student Tobias Niebel, co-author of a study just published in the specialist journal Nature Materials.

Revival of a 100-year-old technique

This is how MASC works: the researchers first create a plaster cast to serve as a mould. Into this mould, they pour a suspension containing magnetised ceramic platelets, such as aluminium oxide platelets. The pores of the plaster mould slowly absorb the liquid from the suspension, which causes the material to solidify and to harden from the outside in.

The scientists create a layer-like structure by applying a magnetic field during the casting process, changing its orientation at regular intervals. As long as the material remains liquid, the ceramic platelets align to the magnetic field. In the solidified material, the platelets retain their orientation.

Through the composition of the suspension and the direction of the platelets, a continuous process can be used to produce multiple layers with differing material properties in a single object. This creates complex materials that are almost perfect imitations of their natural models, such as nacre or tooth enamel. "Our technique is similar to 3D printing, only 10 times faster and much more cost-effective," says Florian Bouville, a post-doc with Studart and co-lead author of the study.

Artificial teeth from casting moulds

To demonstrate the potential of the MASC technique, Studart's research group produced an artificial tooth with a microstructure that mimics that of a real tooth. The surface of the artificial tooth is as hard and structurally complex as a real tooth, while the layer beneath is softer, just like the dentine of the natural model.

The co-lead author of the study, doctoral student Hortense Le Ferrand, and her colleagues began by creating a plaster cast of a human wisdom tooth. They then filled this mould with a suspension containing aluminium oxide platelets and glass nanoparticles as mortar. Using a magnet, they aligned the platelets perpendicular to the surface of the object. Once the first layer was dry, the scientists poured a second suspension into the same mould. This suspension, however, did not contain glass particles. The aluminium oxide platelets in the second layer were aligned horizontally to the surface of the tooth using the magnet.

This double-layered structure was then 'fired' at 1,600 degrees to compress and harden the material: the term sintering is used for this process. Finally, the researchers filled the pores that remained after the sintering with a synthetic monomer used in dentistry, which subsequently polymerised.

Artificial teeth behave just like real teeth

The researchers are very happy with the result. "The profile of hardness and toughness obtained from the artificial tooth corresponds exactly with that of a natural tooth," says a pleased Studart. The procedure and the resulting material lend themselves for applications in dentistry.

However, as Studart points out, the current study is just an initial proof-of-concept, which shows that the natural fine structure of a tooth can be reproduced in the laboratory. "The appearance of the material has to be significantly improved before it can be used for dental prostheses." Nonetheless, as Studart explains, the artificial tooth clearly shows that a degree of control over the microstructure of a composite material can be achieved, previously the sole preserve of living organisms. One part of the MASC process, the magnetisation and orientation of the ceramic platelets, has already been patented.

However, the new production process for such complex biomimetic materials also has other potential applications. For instance, copper platelets could be used in place of aluminium oxide platelets, which would allow the use of such materials in electronics. "The base substances and the orientation of the platelets can be combined as required, which rapidly and easily makes a wide range of different material types with varying properties feasible," says Studart.



Le Ferrand H, Bouville F, Niebel TP, Studart AR. Magnetically assisted slip casting of bioinspired heterogeneous composites. Nature Materials, AOP, 20 September 2015. DOI: 10.1038/nmat4419

Media Contact

André Studart


André Studart | EurekAlert!

Further reports about: Biomimetic ETH ETH Zurich aluminium oxide artificial magnetic field orientation structure teeth

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>