Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biomanufacturing of CdS quantum dots


A bacterial method for the low-cost, environmentally-friendly synthesis of aqueous soluble quantum dot nanocrystals

A team of Lehigh University engineers have demonstrated a bacterial method for the low-cost, environmentally friendly synthesis of aqueous soluble quantum dot (QD) nanocrystals at room temperature.

Using an engineered strain of Stenotrophomonas maltophilia to control particle size, Lehigh researchers biosynthesized quantum dots using bacteria and cadmium sulfide to provide a route to low-cost, scalable and green synthesis of CdS nanocrystals with extrinsic crystallite size control in the quantum confinement range. The result is CdS semiconductor nanocrystals with associated size-dependent band gap and photoluminescent properties.

Credit: Linda Nye for Lehigh University

Principal researchers Steven McIntosh, Bryan Berger and Christopher Kiely, along with a team of chemical engineering, bioengineering, and material science students present this novel approach for the reproducible biosynthesis of extracellular, water-soluble QDs in the July 1 issue of the journal Green Chemistry. This is the first example of engineers harnessing nature's unique ability to achieve cost effective and scalable manufacturing of QDs using a bacterial process.

Using an engineered strain of Stenotrophomonas maltophilia to control particle size, the team biosynthesized QDs using bacteria and cadmium sulfide to provide a route to low-cost, scalable and green synthesis of CdS nanocrystals with extrinsic crystallite size control in the quantum confinement range.

The solution yields extracellular, water-soluble quantum dots from low-cost precursors at ambient temperatures and pressure. The result is CdS semiconductor nanocrystals with associated size-dependent band gap and photoluminescent properties.

This biosynthetic approach provides a viable pathway to realize the promise of green biomanufacturing of these materials. The Lehigh team presented this process recently to a national showcase of investors and industrial partners at the TechConnect 2015 World Innovation Conference and National Innovation Showcase in Washington, D.C. June 14-17.

"Biosynthetic QDs will enable the development of an environmentally-friendly, bio-inspired process unlike current approaches that rely on high temperatures, pressures, toxic solvents and expensive precursors," Berger says. "We have developed a unique, 'green' approach that substantially reduces both cost and environmental impact."

Quantum dots, which have use in diverse applications such as medical imaging, lighting, display technologies, solar cells, photocatalysts, renewable energy and optoelectronics, are typically expensive and complicated to manufacture. In particular, current chemical synthesis methods use high temperatures and toxic solvents, which make environmental remediation expensive and challenging.

This newly described process allows for the manufacturing of quantum dots using an environmentally benign process and at a fraction of the cost. Whereas in conventional production techniques QDs currently cost $1,000-$10,000 per gram, the biomanufacturing technique cuts that cost to about $1-$10 per gram. The substantial reduction in cost potentially enables large-scale production of QDs viable for use in commercial applications.

"We estimate yields on the order of grams per liter from batch cultures under optimized conditions, and are able to reproduce a wide size range of CdS QDs," said Steven McIntosh.

The research is funded by the National Science Foundation's Division of Emerging Frontiers in Research and Innovation (EFRI Grant No. 1332349) and builds on the success of the initial funding, supplied by Lehigh's Faculty Innovation Grant (FIG) and Collaborative Research Opportunity Grant (CORE) programs.

The Lehigh research group is also investigating, through the NSF's EFRI division, the expansion of this work to include a wide range of other functional materials. Functional materials are those with controlled composition, size, and structure to facilitate desired interactions with light, electrical or magnetic fields, or chemical environment to provide unique functionality in a wide range of applications from energy to medicine.

McIntosh said, "While biosynthesis of structural materials is relatively well established, harnessing nature to create functional inorganic materials will provide a pathway to a future environmentally friendly biomanufacturing based economy. We believe that this work is the first step on this path."


The research was conducted by principal investigators McIntosh, Berger, and Kiely along with Zhou Yang and Victoria F. Bernard of the Department of Chemical and Biomolecular Engineering; as well as Li Lu and Qian He of the Department of Materials Science and Engineering, all from Lehigh.

Full article in Green Chemistry:!divAbstract

Jordan Reese | EurekAlert!

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>