Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Washable microcapsules that protect against insects and infections

10.06.2016

Fraunhofer drives forward innovations in microencapsulation technology

The aim of the »Fraunhofer Technology Platform Microencapsulation TPM« is to give more visibility to microencapsulation technology and to take even better advantage of its versatile potential.


© Photo Fraunhofer IAP

Even after multiple washings, the textile retains its color due to the blue microcapsules. This shows how stable the capsules are and how well they are affixed to the textile.

The platform connects research institutions and companies that are active in the field of microencapsulation or are interested in this type of technology. It is jointly supported by the Fraunhofer Institute of Applied Polymer Research IAP (Potsdam-Golm) and the Fraunhofer Institute for Chemical Technology ICT (Pfinztal), as well as the Fraunhofer Research Group »Particle Technology and Raw Material Innovation« at the Nuremberg Institute of Technology.

Eight companies are currently participating in the project, including BASF, Clariant, Follmann, Lanxess, Lonza, the August Koehler Paper Mill and Symrise. On June 16, 2016 the very successful project will be extended for a seventh round and another two years.

Lavender, peppermint and eucalyptus oil – the microencapsulation of essential oils that protect, for instance, against viruses, microbes or insects, is one of the technology platform’s current topics. Permanently affixed to textiles, the capsules have to remain effective and continue to release over time. Potential applications are clothing and household textiles, as well as medical, cosmetic and industrial textiles – for instance, antimicrobial clothing for hospital staff, or bed covers with integrated mosquito protection.

»In order to ensure that the textile retains its special effect even after it has been washed, we are developing microcapsules that can be charged through impregnation with the active ingredient either directly during the washing process or subsequently thereafter,« explains Monika Jobmann, microcapsule expert at the Fraunhofer IAP.

»We prefer using environmentally friendly and natural materials - both for the particle shell and for the active ingredient - which are also environmentally biodegradable,« says Jobmann. A one-year-old feasibility study was funded by the Federal Ministry of Food and Agriculture (BMEL) through the Agency for Renewable Resources (FNR), its project sponsor. This study, conducted by the Fraunhofer IAP, shows that the micro-containers can be attached to cotton fabric. This enables the active ingredient to be selectively dispensed and multiply recharged during or after washing.

Developing these types of particles is a major challenge that requires a range of expertise: precise knowledge about the chemistry of the encapsulated oils and the wall materials, competencies in the microencapsulation technology itself as well as its scale-up, and knowledge about the methods and auxiliaries used to anchor the capsules to the textile. »TPM participants support this and many other projects through their know how, materials and analytics,« the Fraunhofer researcher is happy to report.

The technology platform was established in 2009 and is the only network project on this topic in a German-speaking country. It concentrates and communicates knowledge on the topics of microencapsulation and particle applications, and identifies new ways to use them. Participants regularly receive information on the latest developments, publications and patents in the areas of microencapsulation and particle applications. Furthermore, a workshop is organized on selected topics every two years. Those interested in the TPM can attend this event upon request.


Fraunhofer Institute for Applied Polymer Research IAP

The Fraunhofer IAP in Potsdam-Golm, Germany, specializes in research and development of polymer applications. It supports companies and partners in custom development and optimization of innovative and sustainable materials, processing aids and procedures. In addition to the environmentally friendly, economical production and processing of polymers in the laboratory and pilot plant scale, the institute also offers the characterization of polymers. Synthetic petroleum-based polymers as well as biopolymers and biobased polymers from renewable raw materials are in the focus of the institute’s work. The applications are diverse, ranging from biotechnology, medicine, pharmacy and cosmetics to electronics and optics as well as applications in the packaging, environmental and wastewater engineering or the aerospace, automotive, paper, construction and coatings industries. | Director: Prof. Dr. Alexander Böker

Fraunhofer Institute for Chemical Technology ICT

Including the institute’s external project groups, the Fraunhofer ICT had around 850 employees in 2014. At its headquarters in Pfinztal over 540 employees carry out research and development work in the fields of energetic materials, energetic systems, applied electrochemistry, polymer engineering and environmental engineering. The total area of the institute in Pfinztal is 200,000 m². This includes 25,000 m² of laboratories, offices, pilot plants, workshops, test stands and other facilities. This exceptional research infrastructure, which includes high-volume pilot plants and industrial-scale equipment, enables the institute to develop and implement new materials, processes and products up to near-industrial level. State-of-the-art laboratories, and all the necessary testing and analytical processes, are available for our research work. The Fraunhofer ICT has a close working relationship with numerous universities and colleges, especially with the Karlsruhe Institute of Technology KIT. Fundamental and application-oriented knowledge is utilized and further developed in hundreds of projects each year. The Fraunhofer ICT supports its clients and project partners from the original idea to the prototype phase or even to small-series production, according to their requirements. Clients and project partners are mostly from the automotive and transport sectors, as well as the fields of energy, environment, defense, security, and chemistry and process engineering.

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP
Further information:
http://www.iap.fraunhofer.de

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>