Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic magnets using hydrogen and graphene

27.04.2016

Graphene, a sheet one atom thick made up of carbon atoms, has a huge number of qualities but lacks magnetic properties. Yet the hydrogen atom has the smallest magnetic moment. The magnetic moment is the magnitude that determines how much and in what direction a magnet will exert force.

"In other words, we can all remember having held a magnet in our hands and seeing how it was capable of attracting or repelling another magnet at a certain distance, which was greater or smaller depending on its power. Well, what really determined this behaviour was the magnetic moment of our set of magnets. The distance at which we began to feel the appearance of a force was specified by the spatial extension of their magnetic moments, and the fact that the force should attract or repel depended on the relative orientation between them; that is why when one of the magnets was turned round, they then attracted or repelled each other or vice versa," explained Miguel Moreno Ugeda, a nanoGUNE researcher.


This is a picture of hydrogen atoms in graphene.

Credit: CIC nanoGUNE

"Our work reveals how when a hydrogen atom touches a graphene layer it transfers its magnetic moment to it," said Moreno. "In contraposition to more common magnetic materials such as iron, nickel or cobalt, in which the magnetic moment generated by each atom is located within a few tenths of a nanometre, the magnetic moment induced in the graphene by each atom of hydrogen extends several nanometres, and likewise displays a modulation on an atomic scale," he added.

The experiments were carried out with the help of a tunnel-effect microscope. This microscope allows matter to be imaged and manipulated on an atomic scale. Likewise, the results show that these induced magnetic moments interact strongly with each other at great distances (compared with the atomic scale) while also abiding by a particular rule:

the magnetic moments are added or neutralised depending critically on the relative position between the absorbed hydrogen atoms. What is more, and of equal importance, is that "we have managed to manipulate the individual hydrogen atoms in a controlled way, and this has enabled us to freely establish the magnetic properties of selected regions of graphene," stressed Moreno.

In the quest for magnetism

Ever since 2004 when it was first possible to obtain graphene, laboratories across the world have been trying to add magnetism to the long list of properties of this purely two-dimensional material. This interest arises mainly out of the fact that graphene is, a priori, an ideal material for use in spintronic technology.

This promising technology is aiming to replace traditional electronics by transmitting both magnetic and electronic information at the same time, which could give rise to a new generation of more powerful computers.

So "the results obtained in this work, which indicate the possibility of freely generating magnetic moments in the graphene and showing how these moments can communicate with each other over great distances, are paving the way for a promising future for this material in the emerging field of spintronics," concluded Moreno.

Media Contact

Irati Kortabitarte
i.kortabitarte@elhuyar.com
34-943-363-040

www.elhujayr.com

Irati Kortabitarte | EurekAlert!

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>