Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificially introduced atomic-level sensors enable measurements of the electric field within a working semiconductor device

02.02.2017

Semiconductors lie at the heart of many of the electronic devices that govern our daily lives. The proper functioning of semiconductor devices relies on their internally generated electric fields. Being able to measure these fields on the nanoscale is crucial for the development of next-generation electronics, but present techniques have been restricted to measurements of the electric field at a semiconductor's surface.

A group of Takayuki Iwasaki, Mutsuko Hatano and colleagues at the Tokyo Institute of Technology, the Japan Science and Technology Agency (JST) and Toshiharu Makino at the National Institute of Advanced Industrial Science and Technology (AIST) has reported a new method for sensing internal electric fields at the interior of operating semiconductor devices.


Left: Schematic of the structure of the NV center. Middle: Confocal fluorescence image of a single NV center in the device. Right: Schematic of the measurement configuration.

Credit: Tokyo Institute of Technology

The technique exploits the response of an artificially introduced single electron spin to variations in its surrounding electric field, and enabled the researchers to study a semiconductor diode subject to bias voltages of up to 150 V.

Iwasaki and co-workers applied their method to diamond, a so-called wide-band-gap semiconductor in which the electric fields can become very strong -- a property important for low-loss electronic applications. Diamond has the advantage that it easily accommodates nitrogen-vacancy (NV) centers, a type of point defect that arises when two neighboring carbon atoms are removed from the diamond lattice and one of them is replaced by a nitrogen atom.

NV centers can be routinely created in diamond by means of ion implantation. A nearby electric field affects an NV center's energy state, which in turn can be probed by a method called optically detected magnetic resonance (ODMR).

The researchers first fabricated a diamond p-i-n diode (an intrinsic diamond layer sandwiched between an electron- and a hole-doped layer) embedded with NV centers. They then localized an NV center in the bulk of the i-layer, several hundreds of nanometers away from the interface, and recorded its ODMR spectrum for increasing bias voltages. From these spectra, values for the electric field could be obtained using theoretical formulas. The experimental values were then compared with numerical results obtained with a device simulator and found to be in good agreement -- confirming the potential of NV centers as local electric-field sensors.

Iwasaki and colleagues explain that the experimentally determined value for the electric field around a given NV center is essentially the field's component perpendicular to the direction of the NV center -- aligned along one of four possible directions in the diamond lattice. They reason that a regular matrix of implanted NV centers should enable reconstructing the electric field with a spatial resolution of about 10 nm by combining with super-resolution techniques, which is promising for studying more complex devices in further studies.

The researchers also point out that electric-field sensing is not only relevant for electronic devices, but also for electrochemical applications: the efficiency of electrochemical reactions taking place between a semiconductor and a solution depends on the former's internal electric field. In addition, Iwasaki and co-workers note that their approach need not be restricted to NV centers in diamond: similar single-electron-spin structures exist in other semiconductors like e.g. silicon carbide.

Background

Wide-band-gap semiconductors

Semiconducting materials feature a so-called band gap: an energy range wherein no accessible energy levels exist. In order for a semiconductor to conduct, electrons must acquire sufficient energy to overcome the band gap; controlling electronic transitions across the band gap forms the basis of semiconducting device action. Typical semiconductors like silicon or gallium arsenide have a band gap of the order of 1 electron volt (eV). Wide-band-gap semiconductors, like diamond or silicon carbide, have a larger band gap -- values as high as 3-5 eV are not uncommon.

Due to their large band gap, wide-band-gap semiconductors can operate at temperatures over 300 °C. In addition, they can sustain high voltages and currents. Because of these properties, wide-band-gap semiconductors have many applications, including light-emitting diodes, transducers, alternative-energy devices and high-power components. For further development of these and other future applications, it is essential to be able to characterize wide-band-gap devices in operation. The technique proposed by Iwasaki and colleagues for measuring the electric field generated in a wide-band-gap semiconductor subject to large bias voltages is therefore a crucial step forward.

Nitrogen-vacancy centers

Diamond consists of carbon atoms arranged on a lattice where each atom has four neighbors forming a tetrahedron. The diamond lattice is prone to defects; one such defect is the nitrogen-vacancy (NV) center, which can be thought of as resulting from replacing a carbon atom with a nitrogen atom and removing one neighboring carbon atom. The energy level of an NV center lies in the band gap of diamond but is sensitive to its local environment. In particular, the so-called nuclear hyperfine structure of an NV center depends on its surrounding electric field. This dependence is well understood theoretically, and was exploited by Iwasaki and co-workers: detecting changes in an NV center's hyperfine structure enabled them to obtain values for the local electric field. A major advantage of this approach is that it allows monitoring the field within the material -- not just at the surface, for which methods had already been developed.

Optically-detected magnetic resonance

For probing the nuclear hyperfine structure of an NV center in the bulk of the diamond-based device, Iwasaki and colleagues employed optically detected magnetic resonance (ODMR): by irradiating the sample with laser light, the NV center was optically excited, after which the magnetic resonance spectrum could be recorded. An electric field makes the ODMR resonance split; the experimentally detected split width provides a measure for the electric field.

###

Acknowledgment

This work was supported by a fund from Core Research Evolutionary Science and Technology (CREST) of the Japan Science and Technology Agency (JST).

Media Contact

Emiko Kawaguchi
media@jim.titech.ac.jp
81-357-342-975

http://www.titech.ac.jp/english/index.html 

Emiko Kawaguchi | EurekAlert!

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>