Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017

Innovative biofibers made from a silk protein of the green lacewing are being developed at the Fraunhofer Institute for Applied Polymer Research IAP in conjunction with the company AMSilk GmbH. Researchers are working on producing the protein in large quantities by using biotechnology. The aim is to use the material in the future as a high-grade rigid fiber, for example, in lightweight plastics in transportation technology. It can also be conceivably used in medical technology, for example, as a biocompatible silk coating on implants. The Fraunhofer IAP is presenting its initial material sample at the International Green Week Berlin from January 20 to 29, 2017 in Hall 4.2, booth 212.

In order to protect their offspring from being eaten by predators near the ground, green lacewings deposit their eggs on the underside of leaves – on the ends of stable silk threads. These so-called egg stalks are only around 15 micrometers thick and can easily hold the weight of the eggs.


The mechanical properties of the green lacewing egg stalks are so remarkable that researchers would like to replicate them in technical fibers.

Wikimedia Commons, Karthik R. Bhat

In order to produce these impressive fibers, the green lacewing excretes a protein secretion onto the leaf. The egg is then laid in the droplet and perpendicularly pulled out from the leaf. The resulting silk thread then hardens in the air.

»Unlike most other types of silk, the green lacewing’s egg stalk has a special structure with fascinating mechanical properties: green lacewing silk is extremely rigid and stable. We would like to transfer these special properties to fibers made from this silk. However, until now it has not been possible to produce this type of silk protein in sufficient quantities and purities, « explains Martin Schmidt, biotechnologist at the Fraunhofer IAP in Potsdam-Golm.

In a joint project with the company AMSilk GmbH, the researcher is working on manufacturing large amounts of green lacewing silk protein with the aid of bacteria using a biotech process. A team led by Professor Thomas Scheibel from the Chair of Biomaterials at the University of Bayreuth conducted the preliminary molecular-biological work. They constructed a special gene sequence which enables bacteria to produce the silk protein. Martin Schmidt is now optimizing the manufacturing process at the Fraunhofer IAP so that the silk protein can be produced inexpensively on an industrial scale. After this step it will be possible to develop the material.

AMSilk supports the project by conducting molecular biological work and by contributing its wide-ranging expertise in the field of silk analysis and production. The medium-sized company from Martinsried has been successfully developing silk-based biopolymers for various applications for years.

»We have been able to establish our silk technology and our first products are already available on the market. While the Biosteel® fiber we use is modeled after spider silk and is more soft and flexible, green lacewing silk is very rigid. This special property makes it interesting for medical technology and as a reinforcement fiber in lightweight engineering, for example in cars, airplanes or ships. We are pleased to be working in partnership with the Fraunhofer IAP, which is able to lend its expertise to this project in every area – from the development of the silk material to the finished fiber, « explains Dr. Lin Römer, scientific director of AMSilk. The project is being funded by the Agency for Renewable Resources (FNR), a project management organization of the Federal Ministry of Food and Agriculture.

For 25 years the Fraunhofer IAP has specialized in the development and characterization of fibers and fiber-reinforced composites for lightweight engineering and in the development of biobased polymers. At the institute’s own spinning plant, technical fibers can be manufactured on an industrial scale either from a solution or a melt. »Combining biotechnology and polymer research under one roof creates ideal conditions to produce fibers made from green lacewing silk. This is an enormous advantage for the development of innovative fields of application, « says Schmidt.

At the International Green Week Berlin from January 20 to 29, 2017 visitors to the trade fair nature.tec-Fachschau Bioökonomie in Hall 4.2 / booth 212 can survey the developments of the Fraunhofer IAP in the area of biotechnology and biopolymer research, including an initial material sample made from green lacewing silk.


Fraunhofer Institute for Applied Polymer Research IAP

The Fraunhofer IAP in Potsdam-Golm, Germany, specializes in research and development of polymer applications. It supports companies and partners in custom development and optimization of innovative and sustainable materials, processing aids and processes. In addition to the environmentally friendly, economical production, functionalization and processing of polymers in the laboratory and pilot plant scale, the institute also offers the characterization of polymers.
Synthetic petroleum-based polymers as well as biopolymers, polymers from renewable raw materials and chemically, physically or biologically functionalized polymers are in the focus of the institute’s work. The applications are diverse, ranging from biotechnology, medicine, pharmacy and cosmetics to electronics and optics as well as applications in the packaging, environmental and wastewater engineering or the aerospace, automotive, paper, construction and coatings industries. | Director: Prof. Dr. Alexander Böker

www.iap.fraunhofer.com 


About AMSilk

AMSilk GmbH is the world’s first industrial supplier of synthetic silk biopolymers and has its headquarters in Planegg near Munich, Germany. Sustainably produced using a patented biotechnological process, AMSilk high-performance biopolymers have the unique functional properties of the natural product they are based on. The organic high-performance material can be used in multiple ways, including in medical or technical products as well as cosmetic ingredients. AMSilk high-performance biopolymers give everyday products unique properties. Among other things, the polymers are biocompatible, breathable and especially robust.

AMSilk high-performance biopolymers are distributed in the form of Silkbeads (microparticles), Silkgel (hydrogel) or Biosteel® (fibers). They are currently used in coatings for medical technology products, in the textile industry and as an ingredient in personal care products.

www.amsilk.com

Weitere Informationen:

http://www.iap.fraunhofer.de/en/press_releases/2017/lacewing-silk.html

Dr. Sandra Mehlhase | Fraunhofer-Institut für Angewandte Polymerforschung IAP

More articles from Materials Sciences:

nachricht Physicists gain new insights into nanosystems with spherical confinement
27.07.2017 | Johannes Gutenberg Universitaet Mainz

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>