Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Affordable detectors for gamma radiation

20.09.2016

A research team at Empa and ETH Zurich has developed single crystals made of lead halide perovskites, which are able to gage radioactive radiation with high precision. Initial experiments have shown that these crystals, which can be manufactured from aqueous solutions or low-priced solvents, work just as well as conventional cadmium telluride semi-conductors, which are considerably more complicated to produce. The discovery could slash the price of many radio-detectors – such as in scanners in the security sector, portable dosimeters in power stations and measuring devices in medical diagnostics.

Gamma photons virtually always accompany the radioactive decay of unstable isotopes. In order to identify radioactive substances, cost-effective and highly sensitive gamma detectors that work at room temperature are thus in great demand.


Single crystals made of lead halide perovskites

Empa

Finding suitable substances, however, is easier said than done, as Maksym V. Kovalenko, a professor at ETH Zurich and research group leader at Empa explains: the coveted semiconductor has to be of an outstanding electronic quality, i.e. exhibit a high mobility and lifetime of carriers, along with a low density of trap states as well as of intrinsic carriers at room temperature.

Second, it must be composed of heavy elements that can absorb highly energetic gamma photons. Third, it should be possible to grow large single crystals of this material and these crystals must be stable, both mechanically and thermally.
Classical beaker chemistry

Thus far, only cadmium telluride (CdTe) had fulfilled these requirements. However, the substance also used to produce thin-film solar cells is not water-soluble and only melts at temperatures above 1,000 degrees Celsius, which renders the production of detector crystals complicated and expensive.

Kovalenko and his team have now succeeded in manufacturing single crystals from another family of novel semiconductors (lead halide perovskites) in a usual glass beaker at a cost of just a few Swiss Francs per crystal. These crystals can be used as highly sensitive detectors for gamma radiation, as the researchers recently reported in the journal Nature Photonics.

One possible application might be a mini Geiger counter, which can be connected to smartphones. This might enable people in contaminated areas, for instance, to test their food for radioactivity.
Applications in neurodiagnostics

Another potential field of application for the new crystals is diagnosing metabolic problems in the brain. Dopamine receptor disorders can have numerous consequences: Parkinson’s, schizophrenia, hyperactivity (ADHD), social anxiety disorders or drug addiction and alcoholism. These disorders are diagnosed by giving patients radioactive tracer substances, which render the brain activity visible in magnetic resonance imaging (MRI). Administering radioactive substances is not without its hazards, though: if the substance is impure, it can have adverse health effects. However, its purity has to be verified swiftly as the tracer substance has a rather low half-life, which means it degrades rapidly.


In order to demonstrate the “capabilities” of lead halide perovskites, Kovalenko’s team used the new single crystal detector to test the isotope purity of 18F-fallypride, a tracer substance used in clinical trials on dopamine receptors. 18F-fallypride is radioactive and has a half-life of 110 minutes, which means there is precious little time to test the substance’s radioactive purity between its production and injection.

So far, purity measurements have been conducted in an elaborate, two-step process: first of all, the substance is separated using the high-performance liquid chromatography technique. In the second phase, the radioactivity is then measured with a detector. Thanks to the new crystal, the researchers were able to reduce this two-stage process successfully to one simple step. The crystal merely needs to be held in front of the tracer substance to take the readings.

Weitere Informationen:

http://www.empa.ch/web/s604/gamma-radiation-detector

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>