Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ABattReLife – Causes of battery aging

25.06.2015

On June 11, the German partners of the three-year EU project AbattReLife presented their results on a final conference at the Fraunhofer Institute for Silicate Research ISC in Würzburg. The final event organized by Bayern Innovativ was associated with two workshops and a tour of the new laboratory and technical facilities for electrochemistry, analysis and coating Fraunhofer ISC.

During a period of three years the project partners studied in five project steps what causes aging of electric vehicle batteries and what could stop the aging process or at least slow it down. Also they were looking for secondary uses or a final recycling of aged batteries.


Tobias Bach, Fraunhofer ISC, presented a cycling device for batteries with temperature chambers where battery cells are artificially aged and then examined.

Photo: L. Hirnickel for Fraunhofer ISC

Simon Schuster from the Technical University of Munich explained the impact of different operating conditions during charging and discharging on the aging behavior. In electro mobility a residual capacity of 80% is usually defined as the end of life.

Up to this value lithium-ion batteries age at moderate and constant speed. But some batteries with a capacity lower than 80% change their behavior. The power curve is experiencing a significant bend and nonlinear aging begins. This is favored by excessive charge rates, too high loading capacities, and very low temperatures. The project showed that it was possible to delay aging by reducing loading capacities, limiting voltage, and raising temperatures, ideally to around 35 °C.

Tobias Bach, project manager of ABattReLife at the Fraunhofer ISC, examined the components of the battery cells which showed visible changes. While the positive electrode changed little, the negative graphite electrode was affected by micro fractures, deposits and a metallic lithium veil. In order to avoid alteration of the batteries during examination, they were opened under safety glass.

To investigate the batteries in a space-resolved way, small laboratory cells were built from different parts of the electrodes. Shortly before the extreme bend of performance small areas showed significant changes, the so-called lithium plating. With computed tomography, the scientists at the Fraunhofer ISC discovered that the conductor compressed these areas stronger than the rest of the battery.

This indicates that pressure produces a local overload, which leads to massive loss of lithium and completely destroys this part of the battery. Since the plating is irreversible, the process overlaps other areas – the battery has reached its end. Thus means some types of batteries are not suitable for a second life. The process of lithium plating has to be taken in account in order to reuse batteries for stationary applications.

But many batteries previously used in electric vehicles will find a secondary use. Bernd Baumgartner, Managing Director of Beck Automation, presented examples for local energy storage devices, such as used in the Vattenfall Infopavillon in Hamburg. The energy storage devices developed by Beck Automation were to fulfill several requirements.

They were to be made of readily available components, have a wide range of applications, be easy to establish everywhere and were to be open to subsequent adjustments. BMW provided used battery modules. The goal of the ongoing project is to support self-supply, to relieve the power system, to compensate peaks, to provide electricity in case of emergency, and to optimize loading processes throughout the day.

Anna Gellner and Lutz Wuschke of the Technical University of Freiberg developed a mechanical recycling process for batteries of electric vehicles. In contrast to existing technologies they searched for an effective, low priced method that recovers more raw materials.

They developed a mechanical crushing method to sort the materials using filters, magnets and gravity, and so were able to recover more than 50% of the resources. During the development, however, it became clear that the process had to be adapted to the different types of battery and that the effort depends highly on the different components. The recycling process has already been optimized in order to use it on a pilot scale. The question remains, whether greater effort is justified from the economical point of view.

During the tour of the Fraunhofer ISC laboratory and technical facilities for electriochemistry, analysis and coating, Tobias Bach showed the individual workstations, including the highly specialized equipment that was used to study battery cells with post-mortem analysis, and answered further questions about the project.

In the two final workshops, the participants were able to discuss their ideas and questions with the project partners. The focus was on the operating and environmental conditions that affect the aging mechanism, as well as on the opportunities and risks involved in second-life use of battery cells.

More information about the EU project can be found on www.abattrelife.eu.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.abattrelife.eu

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>