Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A world first! Parity effect observed in graphene, a material garnering great attention

07.08.2015

A new phenomenon in which flow of electricity completely changes with odd and even numbers of junctions

Kensuke Kobayashi (Professor, Graduate School of Science, Osaka University) and Sadashige Matsuo (Assistant Professor, School of Engineering, The University of Tokyo), in a collaborative research effort with a research group led by Teruo Ono (Professor, Institute for Chemical Research, Kyoto University) and Kazuhito Tsukagoshi (Lead Researcher, International Center for Materials Nanoarchitectonics, National Institute for Materials Science), have theoretically projected and successfully proven through experimentation the parity effect of the quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). Graphine, or single-layered graphite, has properties of both metals and semiconductors.


Image*

Copyright : NIMS

This group confirmed that the parity effect in graphene antidot devices has a good analogy to optical systems. This means various quantum interference devices can be produced by using the quantum hall edge transport with pn junctions.

Abstract

We discover the parity effect of the quantum Hall edge transport in graphene, which is a new ubiquitous phenomenon in quantum Hall edge transport in massless Dirac electron systems. First, we theoretically study a graphene device with an antidot and multiple pn junctions (PNJs) and have obtained a new compact formulae to show a significant parity effect regarding the number of PNJs.

Then we have experimentally realized such graphene devices to confirm the new formulae. Our achievement is the first to establish the parity effect on bipolar quantum Hall edge transport in massless Dirac electron systems and is an important step forward to design new electron interferometer devices using graphene.

To learn more about this research, please view the full research report entitled “Parity effect of bipolar quantum Hall edge transport around graphene antidots” at this page of the Scientific Reports website (Please use the link below).

*(a) and (b): Schematic picture of the chirality of the quantum Hall edge states around a single antidot when the number of PNJs (N) is (a) even and (b) odd. The present study has established that the conductance is essentially different between the two cases, namely the parity effect. (c) Optical image of the device. The inset shows that this device has a single open window (an antidot) shown by the white curves. We tuned the top gate voltages of these two top gate electrodes, marked as a and b, in order to experimentally realize the cases with N = 0, 1, 2, and 3.


Associated links
NIMS article

Mikiko Tanifuji | ResearchSea
Further information:
http://www.researchsea.com

Further reports about: Materials Science bipolar graphene graphene devices material semiconductors

More articles from Materials Sciences:

nachricht Physicists gain new insights into nanosystems with spherical confinement
27.07.2017 | Johannes Gutenberg Universitaet Mainz

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>