Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to look at MOFs

10.11.2015

International study challenges prevailing view on how metal organic frameworks store gases

An international collaboration of scientists led by Omar Yaghi, a renowned chemist with the Lawrence Berkeley National Laboratory (Berkeley Lab), has developed a technique they dubbed "gas adsorption crystallography" that provides a new way to study the process by which metal-organic frameworks (MOFs) - 3D crystals with extraordinarily large internal surface areas - are able to store immense volumes of gases such a carbon dioxide, hydrogen and methane.


A technique called "gas adsorption crystallography" that provides a new way to study the process by which metal-organic frameworks (MOFs) store immense volumes of gases such a carbon dioxide, hydrogen and methane.

Image by Hexiang Deng

This new look at MOFs led to a discovery that holds promise for the improved design of MOFs tailored specifically for carbon capture, or for the use of hydrogen and natural gas (methane) fuels.

"Up to this point we have been shooting in the dark in our designing of MOFs without really understanding the fundamental reasons for why one MOF is better than another," says Yaghi. "Our new study expands our view and thinking about MOFs by introducing gas-gas interactions and their organization into superlattices that are a major factor in achieving high storage capacity for gases."

Yaghi, who invented MOFs in the early 1990s while at the Arizona State University, is now a faculty scientist with Berkeley Lab's Materials Sciences Division and the University of California (UC) Berkeley Chemistry Department, where he also serves as co-director of the Kavli Energy NanoScience Institute (Kavli-ENSI).

For this latest study, Yaghi and Osamu Terasaki, a chemist with Stockholm University, along with collaborators from institutes in the United States, China, South Korea and Saudi Arabia, interfaced a gas adsorption apparatus with a form of X-ray crystallography, called in-situ small angle X-ray scattering (SAXS). The result was a gas adsorption crystallography technique that uncovered evidence of cooperative interactions between gas molecules within a MOF.

"These cooperative gas-gas interactions lead to highly organized behavior, which results in the formation of gas aggregates about 40 nanometers in size," Yaghi says. "The aggregates are arranged in orderly superlattice structures, which is in stark contrast to the prevailing view that the adsorption of gas molecules by MOFs occurs stochastically."

Yaghi and Terasaki are the corresponding authors of a paper describing this study that has been published in Nature. The paper is titled "Extra adsorption and adsorbate superlattice formation in metal-organic frameworks." The lead authors are Hae Sung Cho, Hexiang Deng and Keiichi Miyasaka. Other co-authors are Zhiyue Dong, Minhyung Cho, Alexander Neimark and Jeung Ku Kang.

Since Yaghi's original invention, thousands of different types of MOFs have been created. A typical MOF consists of a metal oxide center surrounded by organic molecules that form a highly porous three-dimensional crystal framework. The variations on this basic structure are virtually limitless and can be customized so that a MOF's pores adsorb specific gas molecules, making MOFs potentially ideal gas storage vessels.

"One gram of MOF has a surface area of up to 10,000 square meters onto which it is possible to compact gas molecules into MOF pores like so many bees on a honeycomb without the high pressures and low temperatures usually required for compressed gas storage," Yaghi says.

The selectivity and uptake capacity of a MOF are determined by the nature of the gas molecule being adsorbed and its interactions with the MOF's constituents. While the interactions of gas molecules with the internal surface of a MOF and among themselves within individual pores have been extensively studied, the gas-gas interactions across a MOF's pore walls have not been explored until now.

With their SAXS-based gas adsorption crystallography technique, Yaghi, Terasaki and their collaborators discovered that local strain in the MOF induced by pore-filling can give rise to collective and long-range gas-gas interactions, resulting in the formation of superlattices that extend over several pores.

"We were able to track and map the distribution and ordering of adsorbate molecules in five members of the mesoporous MOF-74 series along entire adsorption-desorption isotherms," Yaghi says. "In all cases, we found that the capillary condensation that fills the pores gives rise to the formation of extra-adsorption domains that span several neighboring pores and have a higher adsorbate density than non-domain pores."

The next step, Yaghi says, will be to apply this new gas adsorption crystallography technique to other porous molecular systems that can serve as gas storage vessels, such as covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs).

"We want to generate a comprehensive view of how various gases interact collectively within porous materials interior," says Yaghi. "We will then feed this data into computer models to improve the theory of gas adsorption."

###

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Media Contact

Lynn Yarris
lcyarris@lbl.gov
510-486-5375

 @BerkeleyLab

http://www.lbl.gov 

Lynn Yarris | EurekAlert!

Further reports about: MOF aggregates gas molecules gas storage interactions pores

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>