Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new vortex identification method for 3-D complex flow

04.05.2016

"Vortex" is a common phenomenon in nature from tornado to turbulence, for example turbulence is a vortex buildup process (Figure 1). Investigators have realized that turbulence is not a purely stochastic process, but a process with coherent vortical structures which play a decisive role in fluid dynamics and energy transport. Therefore, accurate visualization of vortices from huge amount of data obtained by experiments and numerical simulations becomes a key issue to solve the turbulence which is a century-long scientific problem. A new vortex identification method called method, which has been published in Science China: Physics, Mechanics & Astronomy, would be greatly helpful to advance turbulence related researches.

The paper titled as "new omega vortex identification method" has been published on volume (59)2016 by Science China: Physics, Mechanics & Astronomy. The authors reviewed Helmoholtz velocity decomposition and presented a new vortex identification method: the method based on a deep understanding on physics of vortex structure.


Vortices (a) tornado (b) late boundary layer transition.

Credit: ©Science China Press

This method was given by Chaoqun Liu, a professor from the University of Texas at Arlington (UTA.) Researchers including Yong Yang from UTA, Yiqian Wang from Nanjing University of Aeronautics and Astronautics in China, Zhiwei Duan from Tsinghua University in China and Zhengzhong Sun from London City University in UK have applied this new method to variety of complex 3-D flows and all outcomes are promising, further proving the method is correct and accurate.

The authors proposed a further decomposition of the vorticity to vortical part and non-vortical part after reviewed Helmoholtzz velocity decomposition and some counterexamples like Blasius solution which has large vorticity but has no vortex. They introduced a so-called to define and identify vortex. is a ratio of vorticity square over the sum of vorticity square and deformation square.

... more about:
»3-D »astronomy »vortices

According to the ratio, vortex is defined when vorticity overtakes deformation or >0.5. The iso-surface of =0.52 is utilized to represent the vortex surface and further to visualize the vortex structure of the flow field. These researchers applied the method for 3 different cases including late boundary layer transition, supersonic micro vortex generator and roughness induced transition.

Although the three cases have very different Mach number which means the compressibility affection are quite different, the iso-surface of =0.52 well represent the vortex structure without wild adjustment of threshold for all three cases.

This is a unprecedented effort to give vortex a mathematical definition. All traditional vortex identification methods have a common critical weakness which is requirement of selection of a proper threshold. The threshold could be wildly changed case by case, time by time, and even area by area in same case.

Different thresholds will lead to different vortex structure and no one is able to know which threshold is appropriate and which vortex structure is correct. Being different from the traditional vortex identification methods, the method is quite universal and has no need to set up a threshold case by case.

In addition, the method has other advantages which include being easy to perform, having clear physical meaning, and high capability to capture both strong and weak vortices. In general, people think vortex is "vorticity tube", but the method indicates that vortex is a region where vorticity overtakes deformation and vortex is not vorticity tube.

Traditional vortex identification can cause many misunderstandings. For example, people believe turbulence is caused by "vortex breakdown", but it is now understood that this is caused by wrong selection of vortex threshold. It is convinced Dr. Liu's vortex identification method would greatly stimulate research of physics for turbulence generation and complex 3-D flows, especially for vortices dominant flows. It is also believed that many scientists and engineers would apply this method for vortex identification and vortex structure visualization.

###

For details, please see the article:

LIU Chaoqun, WANG Yiqian, YANG Yong & DUAN Zhiwei, New omega vortex identification method, Science China: Physics, Mechanics & Astronomy, 2016, to appear http://engine.scichina.com/publisher/scp/journal/SCPMA/doi/10.1007/s11433-016-0022-6

Science China Press http://www.scichina.com/

Liu Chaoqun | EurekAlert!

Further reports about: 3-D astronomy vortices

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>