Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new member of laser diode family: Electrically pumped organic semiconductor laser

19.12.2017

Based on diversity and functional design of molecule structures with color covering the entire visible spectrum, organic semiconductors have excellent luminescence and lasing properties as well as good solution processing performance. Organic light emitting diode (OLED) has entered the industrialization stage as a kind of advanced display technology.

Low-cost organic semiconductor materials belong to four-level laser system that facilitates the realizing of population inversion. Organic lasers are small-sized, flexible, tunable and easily integrated laser sources for potential application in integrated photonic devices, visible light communication, sensors, medical and scientific research. While, for years, organic semiconductor lasing can only be observed under light excitation.


Threshold and light amplification behaviors in organic semiconductor lasers.

Credit: ©Science China Press

Because of large optical loss from device structure and complex excited state process, it is expected that an ultrahigh threshold current is required for the net gain. Electrically driven organic semiconductor lasers are facing great challenges as most organic materials have poor electrical conductivity.

In order to reduce the laser threshold, Prof. X. Liu's research team at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, has made a breakthrough in this field after years of research. Based on the principle of cavity quantum electrodynamics, planar microcavity of wavelength size can effectively control spontaneous emission and stimulated emission characteristics of organic semiconductors.

The research team has overcome the problem of high loss of electrode within cavity, designed and achieved a high quality factor microcavity organic laser device, and observed obvious gain amplification phenomenon at lower threshold current under quasi continuous operating.

The organic laser uses a small molecule doping system Alq:DCJTI as the gain medium, and the laser peak wavelength is located at 621.7 nm that remains unchanged with the increase of current. The threshold current density is about 1.8 mA/cm2, above which the spectral linewidth is narrowed to 0.835 nm.

The developed vertical cavity organic semiconductor optical amplifier shows a maximum optical gain of 5.25 dB under 16 mA/cm2 electrical pumping. Obtaining low laser threshold is an important step for the practical application of organic lasers, which will bring a room temperature continuous-wave lasing in the near future.

It indicates that optical loss in high-Q organic semiconductor microcavity is significantly reduced, and the underlying physics deserves further investigation.

###

See the article: Jie Lin, Yongsheng Hu, Ying Lv, Xiaoyang Guo, Xingyuan Liu, Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping, Science Bulletin, 2017, doi: https://doi.org/10.1016/j.scib.2017.12.010

http://www.sciencedirect.com/science/article/pii/S2095927317306291

Media Contact

Xingyuan Liu
liuxy@ciomp.ac.cn

http://www.scichina.com/

Xingyuan Liu | EurekAlert!

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>