Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A molecular thread


Flexible metal–organic frameworks with a range of pore sizes are made by threading through molecular ligands

The ability to ‘thread’ a molecular ligand through a metal–organic framework (MOF) to alter the pore size of the material — and yet allow the MOF to retain its crystallinity and principal structural features — has been demonstrated in a new study by A*STAR[1].

A three-dimensional metal–organic framework with interpenetrating bridging ligands and guest molecules denoted as large balls (color codes: cadmium, dark magenta; chlorine, green; oxygen, red; nitrogen, blue; carbon, black). © 2014 A*STAR Institute of Materials Research and Engineering

MOFs are three-dimensional, coordination networks comprising metal ions and organic molecules and usually are crystalline, porous materials with many applications including storage of gases such as hydrogen and carbon dioxide. While ‘threaded’ MOFs have been synthesized in the past, they remain challenging to easily and reliably produce.

Inclusion of molecular ligands creates a flexible, interpenetrated MOF — similar to stitching a thread through fabric to make a new pattern. Use of bridging ligands of varying lengths potentially could lead to materials with many different properties in terms of gas adsorption, gas separation and catalysis.

Now, Andy Hor and colleagues at the A*STAR Institute of Materials Research and Engineering and the National University of Singapore show how solvate molecules adhering to the surface of the channels on a cadmium-based coordination polymer can be replaced with nitrogen-containing ligands that form a bridge between two metal ions of the MOF. These dipyridyl ligands of lengths varying from 0.28 to 1.10 nanometers are then threaded through the pores of the framework to form flexible MOF structures with different porosities (see image).

A surprise for the researchers came when long dipyridyl ligands that were expected to cause structural collapse of the framework were accommodated by slippage of two-dimensional layers within the structure. “Our observation that within these crystals, two side-by-side layers can slip or slide across to create space for guests suggests that these MOFs are actually smarter than we thought because they can respond to external stimuli without losing their crystallinity,” says Hor.

The researchers used the solvent diethylformamide (DEF), rather than the less bulky dimethylformamide solvate, to create cadmium-based double layers with large enough channels to permit the dipyridyl ligands to thread through. They also replaced other DEF solvates within the structure with water to minimize congestion.

“We hope to apply a similar approach to other MOFs — using a range of metals and organic molecules — and to test the boundaries for creating adaptable three-dimensional materials,” says Hor. “We could introduce different functional organic moieties to the present MOF and create materials with magnetic, electronic and photonic functionalities.” Also, the dynamic nature of these MOFs makes them attractive candidates for selective gas adsorption materials.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering. More information about the group’s research can be found at the Porous Materials Laboratory webpage.

[1] Zhang, Z.-X. Ding, N.-N., Zhang, W.-H., Chen, J.-X., Young, D. J. & Hor, T. S. A. Stitching 2D polymeric layers into flexible interpenetrated metal–organic frameworks within single crystals. Angewandte Chemie International Edition 53, 4689–4632 (2014).

A*STAR Research | ResearchSEA
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>