Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A light microscope made only with consumer electronic products

15.06.2016

Light microscopes based on scattering, reflection and absorption, or a combination of these, have been a key enabling technology for the study of objects invisible to our eyes, especially in the field of biology. Many improvements have been made in the past to create state-of-the-art techniques capable of achieving unprecedented resolution and sensitivity albeit their cost, which drastically increases with quality and versatility, making them quite unavailable for general applications.

Holographic, phase contrast or differential interference contrast (DIC) miscroscopes have been implemented especially for making "visible", otherwise "invisible", transparent objects, opening a new pathway towards the study and characterization of relevant structures such as biological cells or protein layers. The DIC microscope invented by Carl Zeiss several decades ago is one of the most popular in this field.


A large field of view interferometric microscope can detect single protein layers.

Credit: ICFO

Now, even though these techniques have offered high sensitivity and resolution, they have shown to be severely limited as far as field-of-view (FOV) and depth-of-field (DOF), a major drawback and great limitation when it comes to large samples, where a scanning method is mandatory and time consuming. The trade-off will always be there: when trying to improve one parameter with a specific combination of lenses, the other will deteriorate.

Therefore, in recent years, research has been focused on developing microscopes without optical lenses or objectives that could offer unprecedented FOV while maintaining fair sensitivity and resolution.

In a paper published in Science Advances, ICFO researchers Roland Terborg, Josselin Pello, Ilaria Mannelli, UPC Prof. at ICFO Juan P. Torres and ICREA Prof. at ICFO Valerio Pruneri, have built a novel low-cost, compact on-chip microscope, made with consumer electronic products, capable of simultaneously measuring nanometer-thick changes over a large volume (0.5cm^3) in transparent objects such as glass.

The researchers have developed a large FOV interferometric on-chip lens free microscope (LIM) based on a novel design with a very high axial sensitivity and DOF, applying a technique adequate to be used in microarray platforms for the detection of proteins without the need of labels.

As Roland Terborg comments, "The challenge of developing a lens-free microscope to detect single protein layers (less than 1nm of optical path difference) seemed rather difficult at the beginning. But as we started to develop the device, everything seemed to fit in very well surpassing our expectations! Instead of having to use very expensive components, we discovered that we could actually use consumer end products without a significant decrease in its sensitivity".

By using collimated polarized light, the team of scientists was able to reconstruct the image by shining light through the transparent sample to observe and analyze the phase shift and interference intensity pattern, a technique known as phase-shifting interferometry (PSI). As UPC Prof at ICFO Juan P. Torres states, "any slight refractive index change introduced by an impurity in the sample is translated into a phase difference and thus an intensity variation in the pattern, showing the contours and therefore size of the irregularity".

As ICREA Prof. at ICFO Valerio Pruneri comments "the device means a major step forward for light microscopy techniques, especially for microarray platforms since it could definitely be used as a point-of-care tool in the diagnosis and treatment of major diseases such as Sepsis, a critical area where fast and accurate results can translate into life changing health outcomes for individuals. We are also thrilled by the fact that this will be part of the Sixsenso spin-off project portfolio including similar devices for detection of particulates and micro-organisms".

The new device has proven to be low-cost, compact, and extremely suitable for point-of-care applications, making it an ideal device to be fully integrated in cameras of smart phones or tablets and used for detecting and scanning of transparent objects or surfaces.

###

Reference

"Ultrasensitive interferometric on-chip microscopy of transparent objects" R. A. Terborg, J. Pello, I. Mannelli, J. P. Torres, V. Pruneri, Sci. Adv., Science Advances, 2016, Vol. 2, no. 6, e1600077, DOI: 10.1126/sciadv.1600077

Media Contact

Alina Hirschmann
alina.hirschmann@icfo.es
34-935-542-246

http://www.icfo.es 

Alina Hirschmann | EurekAlert!

More articles from Materials Sciences:

nachricht Flying: Efficiency thanks to Lightweight Air Nozzles
23.10.2017 | Technische Universität Chemnitz

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>