Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A hydrophobic membrane with nanopores for highly efficient energy storage


Storing fluctuating and delivering stable electric power supply are central issues when using energy from solar plants or wind power stations. Here, efficient and flexible energy storage systems need to accommodate for fluctuations in energy gain. Scientists from the Leibniz Institute for Interactive Materials (DWI), RWTH Aachen University and Hanyang University in Seoul now significantly improved a key component for the development of new energy storage systems.

Redox flow batteries are considered a viable next generation technology for highly efficient energy storage. These batteries use electrolytes, chemical components in solution, to store energy. A vanadium redox flow battery, for example, uses vanadium ions dissolved in sulfuric acid.

Lab set-up of a redox flow battery with the hydrophobic membrane (grey device at the bottom of the image) and two electrolyte reservoirs (bottles with yellow liquid).

Philipp Scheffler / DWI

PhD student Tao Luo and postdoc Il Seok Chae are part of the research team that developed the new hydrophobic membrane with nanopores.

Philipp Scheffler / DWI

Being separated by a membrane, two energy-storing electrolytes circulate in the system. The storage capacity depends on the amount of electrolytes and can easily be increased or decreased depending on the application. To charge or discharge the battery, the vanadium ions are chemically oxidized or reduced while protons pass the separating membrane.

The membrane plays a central role in this system: On the one hand, it has to separate the electrolytes to prevent energy loss by short-circuiting. On the other hand, protons need to pass the membrane when the battery is charged or discharged. To allow efficient, commercial use of a redox flow batteries, the membrane needs to combine both these functions, which still remains a significant challenge for membrane developers so far.

The current benchmark is a Nafion membrane. This membrane is chemically stable and permeable for protons and is well known for H2 fuel cell applications. However, Nafion and similar polymers swell when exposed to water and loose their barrier function for vanadium ions. Polymer chemists try to prevent vanadium leakage by changing the molecular structure of such membranes.

The researchers from Aachen and Seoul came up with a completely different approach: “We use a hydrophobic membrane instead. This membrane keeps its barrier functions since it does not swell in water,” explains Prof. Dr.-Ing. Matthias Wessling. He is the vice scientific director at the Leibniz Institute for Interactive Materials and heads the chair of Chemical Process Engineering at RWTH Aachen University.

“We were pleasantly surprised when we discovered tiny pores and channels in the hydrophobic material and they appear to be filled with water. These water channels allow protons to travel through the membrane with high speed. The vanadium ions, however, are too large to pass the membrane.”

The diameter of the channels is less than two nanometers and the barrier function seems to be stable over time: Even after one week or 100 charging and discharging cycles vanadium ions could not pass the membrane. “We reached an energy efficiency of up to 99 percent, depending on the current. This shows that our membrane is a true barrier for the vanadium ions,” says Wessling. At all current densities tested, between 1 and 40 milliampere per square centimeter, the scientists reached 85 percent energy efficiency or more whereas conventional systems do not exceed 76 percent.

These results suggest a new transport model. Instead of swelling, the polymer with intrinsic microporosity, named PIM, condensed significantly. Water molecules that accumulate in the pores, but not in the polymer itself, might be the reason for this phenomenon. The researchers hope to initiate further studies to analyze this effect in detail.

While the phenomenon is puzzling, the scientists from Aachen and Seoul will perform additional application tests: Can they still improve the hydrophobic membrane for an application in a redox flow battery? And is the membrane stable in the long run? If this is the case, the hydrophobic membrane might indeed advance the practical use of redox flow batteries and similar energy storage systems. The researchers are highly motivated by the idea of a stable energy supply when using sustainable energy sources, by making a contribution to power system and frequency stability.

Chae, I. S., Luo, T., Moon, G. H., Ogieglo, W., Kang, Y. S., & Wessling, M. (2016). Ultra‐High Proton/Vanadium Selectivity for Hydrophobic Polymer Membranes with Intrinsic Nanopores for Redox Flow Battery. Advanced Energy Materials.

Dr. Janine Hillmer | idw - Informationsdienst Wissenschaft
Further information:

More articles from Materials Sciences:

nachricht Custom sequences for polymers using visible light
22.03.2018 | Tokyo Metropolitan University

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>