Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D printing of patterned membranes opens door to rapid advances in membrane technology

03.06.2016

A new type of 3-D printing will make it possible for the first time to rapidly prototype and test polymer membranes that are patterned for improved performance, according to Penn State researchers.

Ion exchange membranes are used in many types of energy applications, such as fuel cells and certain batteries, as well as in water purification, desalination, removal of heavy metals and food processing. Most of these membranes are thin, flat sheets similar to the plastic wrap in your kitchen drawer.


Patterned membranes were created by 3-D printing.

Credit: Hickner Group/Penn State

However, recent work has shown that by creating 3-D patterns on top of the 2-D membrane surface, interesting hydrodynamic properties emerge that can improve ion transport or mitigate fouling, a serious problem in many membrane applications.

Currently, making these patterned membranes, also called profiled membranes, involves a laborious process of etching a silicon mold with the desired pattern, pouring in the polymer and waiting until it hardens. The process is both time-consuming and expensive, and results in a single pattern type.

"We thought if we could use 3-D printing to fabricate our custom-synthesized ion exchange membranes, we could make any sort of pattern and we could make it quickly," says Michael Hickner, associate professor of materials science and engineering, Penn State.

In a paper published online today in the American Chemical Society's journal ACS Applied Materials and Interfaces, Hickner's team describes the development of a custom 3-D photolithographic printing process similar in concept to a current 3-D process called stereolithography.

The team developed a photocurable mixture of ionic polymers and exposed the mixture under a light projector to harden the base layer. They then added more polymer to the base layer and projected a pattern on the new material to selectively harden the surface. The surface pattern increases the conductivity of the membrane by as much as a factor of two or three.

"Membranes act like a resistor in a battery or fuel cell," says Hickner, who is also a member of the Materials Research Institute. "If you can lower the resistance by a factor of two or three, you've really got something useful."

The paper's lead author, Jiho Seo, a Ph.D. candidate in materials science and engineering , added, "While surface-patterned membranes have been studied previously, this is the first 3-D printed example of these structures and the first model that really explains the resistance decrease in a quantitative way.

A simple parallel resistance model describes the effect of the pattern on lowering the resistance of these new membranes. This insight gives us a design tool to continue to innovate and create new patterns for further improvements along with changing the intrinsic chemistry of the material."

The team will continue to optimize the geometry and chemistry of the membranes they print, as well as learn to print new materials, both for membranes and beyond, that have never been printed heretofore.

"We want to bridge the fundamental chemistry and materials science that we do with the engineering and rapid design iterations that the 3-D printing industry is really good at," Hickner concludes.

###

In addition to Seo and Hickner, Douglas Kushner, Ph.D. student in materials science and engineering, contributed to the paper, titled "3-D Printing of Micro-patterned Anion Exchange Membranes."

Support for the photolithography system was provided by Penn State Department of Materials Science and Engineering. The Materials Research Institute and the Penn State Institutes of Energy and the Environment provided infrastructure support.

Media Contact

A'ndrea Elyse Messer
aem1@psu.edu
814-865-9481

 @penn_state

http://live.psu.edu 

A'ndrea Elyse Messer | EurekAlert!

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>