Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D-printed structures 'remember' their shapes

29.08.2016

Heat-responsive materials may aid in controlled drug delivery and solar panel tracking

Engineers from MIT and Singapore University of Technology and Design (SUTD) are using light to print three-dimensional structures that "remember" their original shapes. Even after being stretched, twisted, and bent at extreme angles, the structures -- from small coils and multimaterial flowers, to an inch-tall replica of the Eiffel tower -- sprang back to their original forms within seconds of being heated to a certain temperature "sweet spot."


In this series, a 3-D printed multimaterial shape-memory minigripper, consisting of shape-memory hinges and adaptive touching tips, grasps a cap screw.

Photo courtesy of Qi (Kevin) Ge

For some structures, the researchers were able to print micron-scale features as small as the diameter of a human hair -- dimensions that are at least one-tenth as big as what others have been able to achieve with printable shape-memory materials. The team's results were published earlier this month in the online journal Scientific Reports.

Nicholas X. Fang, associate professor of mechanical engineering at MIT, says shape-memory polymers that can predictably morph in response to temperature can be useful for a number of applications, from soft actuators that turn solar panels toward the sun, to tiny drug capsules that open upon early signs of infection.

"We ultimately want to use body temperature as a trigger," Fang says. "If we can design these polymers properly, we may be able to form a drug delivery device that will only release medicine at the sign of a fever."

Fang's coauthors include former MIT-SUTD research fellow Qi "Kevin" Ge, now an assistant professor at SUTD; former MIT research associate Howon Lee, now an assistant professor at Rutgers University; and others from SUTD and Georgia Institute of Technology.

Ge says the process of 3-D printing shape-memory materials can also be thought of as 4-D printing, as the structures are designed to change over the fourth dimension -- time.

"Our method not only enables 4-D printing at the micron-scale, but also suggests recipes to print shape-memory polymers that can be stretched 10 times larger than those printed by commercial 3-D printers," Ge says. "This will advance 4-D printing into a wide variety of practical applications, including biomedical devices, deployable aerospace structures, and shape-changing photovoltaic solar cells."

Need for speed

Fang and others have been exploring the use of soft, active materials as reliable, pliable tools. These new and emerging materials, which include shape-memory polymers, can stretch and deform dramatically in response to environmental stimuli such as heat, light, and electricity -- properties that researchers have been investigating for use in biomedical devices, soft robotics, wearable sensors, and artificial muscles.

Shape-memory polymers are particularly intriguing: These materials can switch between two states -- a harder, low-temperature, amorphous state, and a soft, high-temperature, rubbery state. The bent and stretched shapes can be "frozen" at room temperature, and when heated the materials will "remember" and snap back to their original sturdy form.

To fabricate shape-memory structures, some researchers have looked to 3-D printing, as the technology allows them to custom-design structures with relatively fine detail. However, using conventional 3-D printers, researchers have only been able to design structures with details no smaller than a few millimeters. Fang says this size restriction also limits how fast the material can recover its original shape.

"The reality is that, if you're able to make it to much smaller dimensions, these materials can actually respond very quickly, within seconds," Fang says. "For example, a flower can release pollen in milliseconds. It can only do that because its actuation mechanisms are at the micron scale."

Printing with light

To print shape-memory structures with even finer details, Fang and his colleagues used a 3-D printing process they have pioneered, called microstereolithography, in which they use light from a projector to print patterns on successive layers of resin.

The researchers first create a model of a structure using computer-aided design (CAD) software, then divide the model into hundreds of slices, each of which they send through the projector as a bitmap -- an image file format that represents each layer as an arrangement of very fine pixels. The projector then shines light in the pattern of the bitmap, onto a liquid resin, or polymer solution, etching the pattern into the resin, which then solidifies.

"We're printing with light, layer by layer," Fang says. "It's almost like how dentists form replicas of teeth and fill cavities, except that we're doing it with high-resolution lenses that come from the semiconductor industry, which give us intricate parts, with dimensions comparable to the diameter of a human hair."

The researchers then looked through the scientific literature to identify an ideal mix of polymers to create a shape-memory material on which to print their light patterns. They picked two polymers, one composed of long-chain polymers, or spaghetti-like strands, and the other resembling more of a stiff scaffold. When mixed together and cured, the material can be stretched and twisted dramatically without breaking.

What's more, the material can bounce back to its original printed form, within a specific temperature range -- in this case, between 40 and 180 degrees Celsius (104 to 356 degrees Fahrenheit).

The team printed a variety of structures, including coils, flowers, and the miniature Eiffel tower, whose full-size counterpart is known for its intricate steel and beam patterns. Fang found that the structures could be stretched to three times their original length without breaking. When they were exposed to heat within the range of 40 C to 180 C, they snapped back to their original shapes within seconds.

"Because we're using our own printers that offer much smaller pixel size, we're seeing much faster response, on the order of seconds," Fang says. "If we can push to even smaller dimensions, we may also be able to push their response time, to milliseconds."

Soft grip

To demonstrate a simple application for the shape-memory structures, Fang and his colleagues printed a small, rubbery, claw-like gripper. They attached a thin handle to the base of the gripper, then stretched the gripper's claws open. When they cranked the temperature of the surrounding air to at least 40 C, the gripper closed around whatever the engineers placed beneath it.

"The grippers are a nice example of how manipulation can be done with soft materials," Fang says. "We showed that it is possible to pick up a small bolt, and also even fish eggs and soft tofu. That type of soft grip is probably very unique and beneficial."

Going forward, he hopes to find combinations of polymers to make shape-memory materials that react to slightly lower temperatures, approaching the range of human body temperatures, to design soft, active, controllable drug delivery capsules. He says the material may also be printed as soft, responsive hinges to help solar panels track the sun.

"Very often, excessive heat will build up on the back side of the solar cell, so you could use [shape-memory materials] as an actuation mechanism to tune the inclination angle of the solar cell," Fang says. "So we think there will probably be more applications that we can demonstrate."

###

This research is supported in part by the SUTD Digital Manufacturing and Design Center (DManD) and the SUTD-MIT joint postdoctoral program.

Media Contact

Abby Abazorius
abbya@mit.edu
617-253-2709

 @MIT

http://web.mit.edu/newsoffice

Abby Abazorius | EurekAlert!

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>