Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016

Garbage, nutrients and tiny animals are pushed around, suspended in the world's oceans by waves invisible to the naked eye according to a new 3-D model developed by mathematicians at the University of Waterloo.

David Deepwell, a graduate student, and Professor Marek Stastna in Waterloo's Faculty of Mathematics have created a 3-D simulation that showcases how materials such phytoplankton, contaminants, and nutrients move within aquatic ecosystems via underwater bulges called mode-2 internal waves.


Garbage, nutrients and tiny animals are pushed around, suspended in the world's oceans by waves invisible to the naked eye according to a new 3-D model developed by mathematicians at the University of Waterloo.

The image shows the 3-D model of mode 2 internal waves.

Credit: University of Waterloo

The simulation can help researchers understand how internal waves can carry materials over long distances. Their model was presented in the American Institute of Physics' journal Physics of Fluids earlier this week.

In the simulation, fluids of different densities are layered like the layers of a cake, creating an environment similar to that found in large aquatic bodies such as oceans and lakes. A middle layer of fluid, known as a pycnocline, over which the layers are closely packed together is created, and it is in this layer that materials tend to be caught.

"When the fluid behind the gate is mixed and then the gate is removed, the mixed fluid collapses into the stratification because it is both heavier than the top layer and lighter than the bottom one," explained Deepwell, "Adding dye to the mixed fluid while the gate is in place simulates the material we want the mode-2 waves - the bulges in the pycnocline formed once the gate is taken away - to transport. We can then measure the size of the wave, how much dye remains trapped within it, and how well the wave carries its captured material."

Deepwell and Statsna found that the larger the bulge within the pycnocline, the larger the amount of material carried by the mode-2 wave.

While they have discovered an optimal scenario in which the mode-2 internal wave survives and then transports material for as long a distance as possible, the internal waves can also break down due to small regions of instability, called lee instabilities, that form behind the wave. When the mode-2 wave breaks down, material is lost behind the wave. Ongoing experimental work and simulations are exploring how this type of wave interacts with underwater topography like sea mounts.

###

About the University of Waterloo

University of Waterloo is Canada's top innovation university. With more than 36,000 students we are home to the world's largest co-operative education system of its kind. Our unmatched entrepreneurial culture, combined with an intensive focus on research, powers one of the top innovation hubs in the world. Find out more at uwaterloo.ca

Media Contact

Nick Manning
nmanning@uwaterloo.ca
226-929-7627

 @uWaterlooNews

http://www.uwaterloo.ca/ 

Nick Manning | EurekAlert!

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>