New material provides a key to explaining superconductivity

Physicists around the world are working hard to explain this physical phenomenon. Yet, to this day, nobody knows exactly why some materials suddenly become superconductors below a certain temperature. Researchers at Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) present new findings in the current issue of Nature Materials that could finally resolve a long-standing dispute as to which theory is correct.

One thing is for sure: a phase transition from “non-conducting” to “conducting” occurs at around the transition temperature – below which electrical resistance drops to barely measurable. The atoms in the crystalline lattice rearrange themselves, and the material can take on new properties. One theory proposes that superconductivity is a property already inherent in the source materials used to produce superconductors. These source materials are always insulators; that is, materials that do not conduct electricity.

They only become conductive after a process called doping, where foreign atoms are incorporated into the crystalline lattice. The second theory proposes that two phases “compete” as the material approaches the transition temperature, and that superconductivity arises out of this phenomenon. “Our findings confirm the correctness of this [latter] theory”, says Dimitri Argyriou of HZB.

He and his team investigated a lanthanum-strontium-manganate compound. This material is not an actual superconductor, but it is similarly produced by doping an insulating material. As it is, however, lanthanum-strontium-manganate is a poor conductor. Argyriou and his team studied this novel metal by neutron scattering and discovered a difference from normal metals.

In pure metals such as copper, there are free electrons that allow the flow of electric current, where present theory has it that these electrons accumulate to form a so-called electron gas.

In lanthanum-strontium-manganate, the HZB researchers have discovered, the free electrons only briefly behave as an electron gas. They do not “forget” that they originated from an insulator and suddenly become trapped again in the crystalline lattice. They actually alternate between these two states, becoming free (conductive) for a time, and then becoming trapped (non-conductive) again.

“This behaviour proves that the insulator property remains anchored in the doped material's memory, and that the property of superconductivity does not exist in the source material”, Dimitri Argyriou concludes.

Institute Complex Magnetic Materials
Dr. Dimitri Argyriou
Tel.: (030) 8062-3016
Fax: (030) 8062-2999
Email: argyriou@helmholtz-berlin.de
Press office
Dr. Ina Helms
Tel.: (030) 8062-2034
Fax: (030) 8062-2998
Email: ina.helms@helmholtz-berlin.de

Media Contact

Dr. Ina Helms idw

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Octopus inspires new suction mechanism for robots

A new robotic suction cup which can grasp rough, curved and heavy stone, has been developed by scientists at the University of Bristol. The team, based at Bristol Robotics Laboratory,…

Peptides on Interstellar Ice

A research team led by Dr Serge Krasnokutski from the Astrophysics Laboratory at the Max Planck Institute for Astronomy at the University of Jena had already demonstrated that simple peptides…

A new look at the consequences of light pollution

GAME 2024 begins its experiments in eight countries. Can artificial light at night harm marine algae and impair their important functions for coastal ecosystems? This year’s project of the training…

Partners & Sponsors