MIT "plasmatron" drastically reduces smog emissions in a diesel bus

45th Annual Meeting of the Division of Plasma Physics

MIT physicists will report a new advance with the plasmatron, a small device that converts part of a fuel into a hydrogen-rich gas that reduces the emission of pollutants from vehicles. Developed by MIT researchers, the plasmatron was tested on a diesel-engine bus in Columbus, Indiana. The bus was tested by a team of engineers from ArvinMeritor, a major automotive and heavy truck components manufacturer which has licensed the plasmatron technology from MIT.

At the meeting, the MIT researchers will report that the plasmatron device, used with a special catalyst that treats the exhaust, reduced nitrous oxides from the vehicle by 90 percent. Nitrous oxides (NOx) are a major component of smog. In development for a half-dozen years, the plasmatron is showing special promise for early commercialization in diesel engines, which power many buses and trucks. The MIT researchers believe the plasmatron may provide an excellent means for those vehicles to meet stricter EPA standards planned to go into effect by 2007 for buses and heavy trucks. The plasmatron technology can also be used in gasoline engines, and makes them run potentially 30% times more efficiently while also being affordable and very clean.

The work is funded by the Department of Energy’s FreedomCAR and Vehicle Technologies Program and by ArvinMeritor.

Contacts
Leslie Bromberg, MIT, 617-308-1936
Dan Cohn, MIT, 617-834-9411

Media Contact

David Harris American Physical Society

Alle Nachrichten aus der Kategorie: Transportation and Logistics

This field deals with all spatial and time-related activities involved in bridging the gap between goods and people, including their restructuring. This begins with the supplier and follows each stage of the operational value chain to product delivery and concludes with product disposal and recycling.

innovations-report provides informative reports and articles on such topics as traffic telematics, toll collection, traffic management systems, route planning, high-speed rail (Transrapid), traffic infrastructures, air safety, transport technologies, transport logistics, production logistics and mobility.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Argonne targets lithium-rich materials as key to more sustainable cost-effective batteries

Next-generation batteries using lithium-rich materials could be more sustainable and cost-effective, according to a team of researchers with the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The pivotal discovery,…

Why disordered light-harvesting systems produce ordered outcomes

Scientists typically prefer to work with ordered systems. However, a diverse team of physicists and biophysicists from the University of Groningen found that individual light-harvesting nanotubes with disordered molecular structures…

RadarGlass – from vehicle headlight to radar transceiver

As a result of modern Advanced Driver Assistance Systems, the use of radar technology has become indispensable for the automotive sector. With the installation of a large and growing number…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close