Innovative method for producing analytical suspension cell lines
Analytical cell-based assays used in diverse applications such as the risk assessment of chemicals and the investigation of stem cell propagation stages, currently employ adherent cell lines. This cell type comes with serious drawbacks. Most importantly, extensive measures are needed for propagation purposes. Intriguingly, scientists at RWTH Aachen University have invented a method of stably growing any analytical (reporter) cell line in suspension. This enables high cell density growth and bulk applications towards tissue engineering, as well as toxicity testing. Furthermore, the method profoundly enhances high-throughput screening efficiency.
Further information: PDF
Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH
Phone: +49 (0)721/79 00 40
Contact
Dipl.-Biol. Marcus Lehnen, MBA
As Germany's association of technology- and patenttransfer agencies TechnologieAllianz e.V. is offering businesses access to the entire range of innovative research results of almost all German universities and numerous non-university research institutions. More than 2000 technology offers of 14 branches are beeing made accessable to businesses in order to assure your advance on the market. At www.technologieallianz.de a free, fast and non-bureaucratic access to all further offers of the German research landscape is offered to our members aiming to sucessfully transfer technologies.
Media Contact
All latest news from the category: Technology Offerings
Newest articles
Graphene grows – and we can see it
Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile…
PSMA PET improves decision making for prostate cancer treatment
Detailed PSMA PET mapping of cancer recurrence in the prostate bed shows that current radiotherapy contouring guidelines—which determine the target areas for treatment—miss a significant number of lesions and may…
The search for the missing gravitational signal
A new SISSA study proposes an array of interferometers in space to detect subtle fluctuations in the background gravitational signals that may reveal the secrets of black hole mergers. Every…