Bacterial TIR domain mimics as autoimmune and anti-infective therapeutics
Pathogenic microbes possess sophisticated molecular tools to suppress the immune response of their mammalian hosts. Recently, a novel mechanism used by microbial pathogens
to circumvent innate immunity was demonstrated (Cirl et al. 2008, Nature Medicine 14, 399-406). This involves a bacterial TIR domain-containing protein (Tcp) that is secreted by bacterial pathogens and inhibits Toll-like receptor (TLR) signalling. <p> Toll-like receptors have a central role in innate immunity. They recognise molecules from microbial pathogens and trigger an immune response through a signalling domain called TIR. Bacterial Tcps contain a TIR domain that mimics the TIR domain of Toll-like receptors. TLR signalling is interrupted when MyD88, a downstream component of TLR signalling, binds to the TIR domain of a bacterial Tcp instead of to the TIR domain of a Toll-like receptor. This way, secreted Tcps impair the release of cytokines and, subsequently, prevent an inflammatory response. <p> Our data show that bacterial Tcps or the TIR domains contained in Tcps can be used to modulate cytokine responses of innate immune cells as is desirable in the treatment of autoimmune diseases. Also, we provide a new anti-infective strategy that prevents secretion of Tcps. Reference: Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H, Svanborg C, Miethke T (2008) Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins.
Further Information: PDF
Bayerische Patentallianz GmbH
Phone: +49 89 5480177-0
Contact
Peer Biskup
Media Contact
Alle Nachrichten aus der Kategorie: Technology Offerings
Neueste Beiträge
Determination of glycine transporter opens new avenues …
… in development of psychiatric drugs Glycine can stimulate or inhibit neurons in the brain, thereby controlling complex functions. Unraveling the three-dimensional structure of the glycine transporter, researchers have now…
Metallic state of Ag nanoclusters in oxidative dispersion identified in situ
Oxidative dispersion has been widely used in the regeneration of sintered metal catalysts as well as the fabrication of single-atom catalysts. The consensus on the oxidative dispersion process includes the…
A COSMIC approach to nanoscale science
Instrument at Berkeley Lab’s Advanced Light Source achieves world-leading resolution of nanomaterials. COSMIC, a multipurpose X-ray instrument at Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Advanced Light Source (ALS), has made…