Stress Hormone Blocks Testosterone’s Effects

The study, led by Robert Josephs, professor of psychology at The University of Texas at Austin, and Pranjal Mehta, assistant professor of psychology at the University of Oregon, is the first to show that two hormones—testosterone and cortisol—jointly regulate dominance.

The findings, available online in Hormones and Behavior, show that when cortisol—a hormone released in the body in response to threat—increases, the body is mobilized to escape danger, rather than respond to any influence that testosterone is having on behavior.

The study provides new evidence that hormonal axes (complex feedback networks between hormones and particular brain areas that regulate testosterone levels and cortisol) work against each other to regulate dominant and competitive behaviors.

“It makes good adaptive sense that testosterone's behavioral influence during an emergency situation gets blocked because engaging in behaviors that are encouraged by testosterone, such as mating, competition and aggression, during an imminent survival situation could be fatal,” Josephs said. “On the other hand, fight or flight behaviors encouraged by cortisol become more likely during an emergency situation when cortisol levels are high. Thus, it makes sense that the hormonal axes that regulate testosterone levels and cortisol levels are antagonistic.”

As part of the study, the researchers measured hormone levels of saliva samples provided by 57 subjects. The respondents participated in a one-on-one competition and were given the opportunity to compete again after winning or losing. Among those who lost, 100 percent of the subjects with high testosterone and low cortisol requested a rematch to recapture their lost status. However, 100 percent of participants with high testosterone and high cortisol declined to compete again. All subjects who declined a rematch experienced a significant drop in testosterone after defeat, which may help to explain their unwillingness to compete again, Josephs said.

The researchers suggest these findings reveal new insights into the physiological effects of stress and how they may play a role in fertility problems. According to research, chronically elevated cortisol levels can produce impotence and loss of libido by inhibiting testosterone production in men. In women, chronically high levels of cortisol can produce severe fertility problems and result in an abnormal menstrual cycle.

“When cortisol levels remain elevated, as is the case with so many people who are under constant stress, the ability to reproduce can suffer greatly,” Josephs said. “However, these effects of cortisol in both men and women are reversed when stress levels go down.”

Jessica Sinn, College of Liberal Arts, 512-471-2404; Robert Josephs, Department of Psychology, College of Liberal Arts, 512-471-9788.

Media Contact

Jessica Sinn Newswise Science News

Further information:

http://www.utexas.edu/opa/

All news from this category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to the Homepage

Comments (0)

Write comment

Latest posts

How electrons behave in quantum critical ferromagnets?

At a classical second-order phase transition, condensed matter systems acquire long-range order upon cooling below the transition temperature, and the properties near the transition are driven by thermal fluctuations. These…

Black holes help with star birth

The cosmic mass monsters clear the way for the formation of new suns in satellite galaxies. Research combining systematic observations with cosmological simulations has found that, surprisingly, black holes can…

Trions exhibit novel characteristics in moiré superlattices

New physics revealed by UC Riverside-led research could improve understanding of moiré superlattices. When two similar atomic layers with mismatching lattice constants — the constant distance between a layer’s unit…

Partners & Sponsors